Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(x+3\right)\left(5-x\right)=0\\ \Rightarrow\left\{{}\begin{matrix}x+3=0\\5-x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)
\(c,x+17⋮x+3\\ x+3+14⋮x+3\\ 14⋮x+3\\ x+3\inƯ\left(14\right)=\left\{\pm14;\pm7\pm2;\pm1\right\}\)
Từ đó bạn tìm những giá trị của x nha!
a) \(x\left(x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b) \(\left(-7-x\right)\left(-x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-7\\x=-5\end{matrix}\right.\)
c) \(\left(x+3\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)
d) \(\left(x-3\right)\left(x^2+12\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\text{(vô lý)}\end{matrix}\right.\)
\(\Rightarrow x=3\)
e) \(\left(x+1\right)\left(2-x\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+1\ge0\\2-x\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x+1\le0\\2-x\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-1\\x\le2\end{matrix}\right.\\\left[{}\begin{matrix}x\le-1\\x\ge2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-1\le x\le2\\x\in\varnothing\end{matrix}\right.\)
\(\Rightarrow-1\le x\le2\)
f) \(\left(x-3\right)\left(x-5\right)\le0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-3\le0\\x-5\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x-3\ge0\\x-5\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\\\left[{}\begin{matrix}x\ge3\\x\le5\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow3\le x\le5\)
a) =>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b => \(\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=5\end{matrix}\right.\)
d) => \(\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\end{matrix}\right.\)(vô lí) => x=3
a) | x-3 | -1 > hoặc bằng 0
1+| x-3 | - 1 > hoặc bằng 0 +1
1+| x-3 | - 1 > hoặc bằng 1
Dấu = xảy ra khi x-3-1 =0
x =0+1
x-3 =1
x=1+3
x=4
b) | x-2 | +3 < hoặc bằng 4
1+| x-2 | +3 < hoặc bằng 4+1
1+ |x-2 | +3 < hoặc bằng 5
Dấu = xảy ra khi x-2 +3 =4
x -2 = 4-3
x -2 = 1
x = 1+2
x = 3
c) 2< |x| <5
Vì |x|>2 và |x| <5
nên |x|= 3 , 4
Suy ra x=3,-3,4,-4
Vậy x { 3, -3, 4 ,-4 }
a) mọi x thuộc Z khác 3
b) x thuộc {1 ; 2 ; 3 }
c) x thuộc {-4 ; -3 ; 3 ;4}
Bài 2:
a, |x-1| -x +1=0
|x-1| = 0-1+x
|x-1| = -1 + x
\(\orbr{\begin{cases}x-1=-1+x\\x-1=1-x\end{cases}}\)
\(\orbr{\begin{cases}x=-1+x+1\\x=1-x+1\end{cases}}\)
\(\orbr{\begin{cases}x=x\\x=2-x\end{cases}}\)
x = 2-x
2x = 2
x = 2:2
x=1
b, |2-x| -2 = x
|2-x| = x+2
\(\orbr{\begin{cases}2-x=x+2\\2-x=2-x\end{cases}}\)
2-x = x+2
x+x = 2-2
2x = 0
x = 0
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
a: \(\dfrac{4}{5}-\dfrac{5}{6}< =\dfrac{x}{30}< =\dfrac{1}{3}-\dfrac{3}{10}\)
=>\(\dfrac{24-25}{30}< =\dfrac{x}{30}< =\dfrac{10-9}{30}\)
=>\(\dfrac{-1}{30}< =\dfrac{x}{30}< =\dfrac{1}{30}\)
=>-1<=x<=1
mà x nguyên
nên \(x\in\left\{-1;0;1\right\}\)
b: \(\dfrac{a}{7}+\dfrac{1}{14}=\dfrac{-1}{b}\)
=>\(\dfrac{2a+1}{14}=\dfrac{-1}{b}\)
=>\(\left(2a+1\right)\cdot b=-14\)
mà 2a+1 lẻ (do a là số nguyên)
nên \(\left(2a+1\right)\cdot b=1\cdot\left(-14\right)=\left(-1\right)\cdot14=7\cdot\left(-2\right)=\left(-7\right)\cdot2\)
=>\(\left(2a+1;b\right)\in\left\{\left(1;-14\right);\left(-1;14\right);\left(7;-2\right);\left(-7;2\right)\right\}\)
=>\(\left(a;b\right)\in\left\{\left(0;-14\right);\left(-1;14\right);\left(3;-2\right);\left(-4;2\right)\right\}\)
a) /x-2/ nhỏ hơn hoặc bằng 2
vì /a/ \(\ge\)0
mà /x-2/\(\le\)2
\(\Rightarrow\)/x-2/={0;1;2}
Nếu /x-2/=0
x-2 =0
\(\Rightarrow\)x=2
Nếu /x-2/=1
x-2 =1
\(\Rightarrow\)x=3
Nếu /x-2/=2
x-2 =2
\(\Rightarrow\)x=4
Vì x\(\in\)Z nên x={2;3;4}
b) /x-3/ nhỏ hơn hoặc bằng 0
Vì /a/\(\ge\)0
mà /x-3/\(\le\)0
nên /x-3/=0
x-3 =0
\(\Rightarrow\)x=3
1) Giải theo cách lớp 8 nhé:
Áp dụng BĐT (a + b)² >= 4ab (với a,b là các số không âm). Dấu "=" xảy ra khi a = b. C/m đơn giản thôi, bạn chuyển vế đưa về hằng đẳng thức đúng.
(x + y)² >= 4xy
(y + z)² >= 4yz
(x + z)² >= 4xz
Nhân theo vế 3 BĐT trên có: (x + y)²(y + z)²(x + z)² >= 64x²y²z²
=> (x + y)(y + z)(z + x) >= 8xyz (vì x,y,z >= 0)
2) ĐK để các phân thức có nghĩa: a + b; b + c; c +a khác 0.
Ta có: a²/(a +b) + b²/(b + c) + c²/(c + a) = b²/(a +b) + c²/(b + c) + a²/(c + a) (*)
<=> a²/(a +b) + b²/(b + c) + c²/(c + a) - b²/(a +b) - c²/(b + c) - a²/(c + a) = 0
<=> (a² - b²)/(a + b) + (b² - c²)/(b + c) + (c² - a²)/(c + a) = 0
<=> (a - b)(a + b)/(a + b) + (b - c)(b + c)/(b + c) + (c - a)(c + a)/(c + a) = 0
<=> a - b + b - c + c - a = 0
<=> 0 = 0 (1)
x = ( -3 ) , y = ( -5 )
x = ( -2 ) , y = 0
x= ( -1 ) , y = ( -3 )
x=0,y=(-2)
x=1,y=(-1)
x=2,y=0
x=3,y=1
a) từ bài trên
=> x-3-1>hoặc=0 với x thuộc N
=> x>hoặc=4
b) từ bài trên
=> x-2+3<hoặc=4 với x thuộc N
=> x thuộc 3,2,1,0
c) từ bài trên
=> x thuộc 3,4,5 với x thuộc N