
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Điều kiện: 2009.x\(\ge\)0
\(\Rightarrow\)x\(\ge\)0
\(\Rightarrow\)/x+1/, /x+2/, .... , /x+2008/\(\ge\)0
\(\Rightarrow\)/x+1/+/x+2/+...+/x+2008/=2009.x\(\Leftrightarrow\)2008x+1+2+...+2008=2009x
\(\Rightarrow\)x=2017036
Vậy \(x=2017036\)

Dễ thấy: \(\left\{{}\begin{matrix}\left|x+1\right|\ge0\\\left|x+2\right|\ge0\\.................\\\left|x+2008\right|\ge0\end{matrix}\right.\)\(\forall x\)
\(\Rightarrow VT=\left|x+1\right|+\left|x+2\right|+...+\left|x+2008\right|\ge0\forall x\)
\(\Rightarrow VP\ge0\forall x\Rightarrow2009x\ge0\Rightarrow x\ge0\)
Vậy \(pt\Leftrightarrow\left(x+1\right)+\left(x+2\right)+...+\left(x+2008\right)=2009x\)
\(\Leftrightarrow\left(x+x+...+x\right)+\left(1+2+...+2008\right)=2009x\)
\(\Leftrightarrow2008x+2017036=2009x\)
\(\Leftrightarrow2009x-2008x=2017036\Leftrightarrow x=2017036\)


\(\dfrac{2}{2\cdot3}+\dfrac{2}{3\cdot4}+\dfrac{2}{4\cdot5}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2008}{2010}\\ 2\cdot\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{2008}{2010}\\ \dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2008}{2010}:2\\ \dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{1004}{2010}\\ \dfrac{1}{x+1}=\dfrac{1}{2}-\dfrac{1004}{2010}\\ \dfrac{1}{x+1}=\dfrac{1}{2010}\\ \Rightarrow x+1=2010\\ \Rightarrow x=2009\)
(x+2007) + ( x+1+2006) + ..... +0 =0
=> x +2007 =0
=> x =-2007