Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
làm mẫu 1 bài ha :(
\(\left(x+5\right).2x>0\Leftrightarrow\hept{\begin{cases}x+5>0\\2x>0\end{cases}\text{hoặc}\hept{\begin{cases}x+5< 0\\2x< 0\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x>-5\\x>0\end{cases}\text{hoặc}\hept{\begin{cases}x< -5\\x< 0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x< -5\\x>0\end{cases}}}\)
a) \(x\left(x-3\right)>0\)
\(\Leftrightarrow x\) và \(x-3\) cùng dấu
\(TH:\hept{\begin{cases}x>0\\x-3>0\end{cases}}\Rightarrow x>3\)
\(TH:\hept{\begin{cases}x< 0\\x-3< 0\end{cases}}\Leftrightarrow x< 0\)
b) \(x\left(x+2\right)>0\)
\(\Leftrightarrow x\) và \(x+2\) cùng dấu
\(TH:\hept{\begin{cases}x>0\\x+2>0\end{cases}}\Rightarrow x>0\)
\(TH:\hept{\begin{cases}x< 0\\x+2< 0\end{cases}}\Leftrightarrow x< -2\)
c) \(\left(x+5\right)2x>0\)
\(\Leftrightarrow2x^2+10x>0\)
\(\Leftrightarrow x\inℕ^∗\)
d) \(x\left(x+3\right)< 0\)
\(\Leftrightarrow x\) và \(x+3\) trái dấu
Mà x < x + 3 nên \(\hept{\begin{cases}x< 0\\x+3>0\end{cases}}\Rightarrow-3< x< 0\)
Vậy \(x\in\left\{-2;-1\right\}\)
a,x.(x+7)=0
suy ra x=o hoặc x+7=0
vs x+7=0
x=0+7
x=7
vậy x=0 hoặc x=7
b(2+2x)(7-x)=0
suy ra 2+2x=0 hoặc 7-x=0
vs2+2x=0 vs7-x=0
2x =0-2 x=0+7
2x =(-2) x=7
x=(-2);2
x=-1
vậy x=-1 hoặc x=7
d(x^2-9)(3x+15)=0
suy ra x^2-9=0 hoặc 3x+15=0
vsx^2-9=0 vs 3x+15=0
x^2 =0+9 3x =0-15
x^2 =9 3x =-15
x^2 =3^2 x=(-15):3
suy ra x=3 hoặc x=-3 x=-5
vậy x=3 x=-3 hoặc x=-5
e,(4x-8)(x^2+1)=0
suy ra4x-8=0 hoặc x^2+1=0
vs 4x-8=0 vs x^2+1=0
4x =0+8 x^2 =0-1
4x =8 x^2 =-1
x =8:4 x^2 =-1^2 hoặc 1^2
x =2 suy ra x=-1 hoặc x=1
vậy x=2, x=-1 hoặc x=1
a) |2x - 1| - 3 = 5
=> |2x - 1| = 8
Có 2 TH xảy ra:
TH1 : 2x - 1 = 8 => 2x = 9 => x = 9/2 (ko thỏa mãn x thuộc Z)
TH2 : -(2x - 1) = 8 => -2x + 1 = 8 => -2x = 9 => x = -9/2 (ko thỏa mãn x thuộc Z)
b) |3x - 5| = 4
Có 2 TH xảy ra :
TH1 : 3x - 5 = 4 => 3x = 9 => x = 3
TH2 : -(3x - 5) = 4 => -3x + 5 = 4 => -3x = -1 => x = 1/3 (ko thỏa mãn x thuộc Z)
c) |5x - 1| = |-3 - 3x|
Có 2 TH xảy ra :
TH1 : 5x - 1 = -3 - 3x => 5x + 3x = -3 + 1 => 8x = -2 => x = -1/4 (ko thỏa mãn x thuộc Z)
TH2 : 5x - 1 = -(-3 - 3x) => 5x - 1 = 3 + 3x => 5x - 3x = 3 +1 => 2x = 4 => x = 2
d) |4x - 8| = |x + 1|
Có 2 TH xảy ra :
TH1 : 4x - 8 = x + 1 => 4x - x = 1 + 8 => 3x = 9 => x = 3
TH2 : 4x - 8 = -(x + 10) => 4x - 8 = -x - 10 => 4x + x = -10 + 8 => 5x = -2 => x = -2/5 (ko thỏa mãn x thuộc Z)
e) |3x - 5| - |4x + 9| = 0
=> |3x - 5| = |4x + 9|
Có 2 TH xảy ra :
TH1 : 3x - 5 = 4x + 9 => 3x - 4x = 9 + 5 => -x = 14 => x = -14
TH2 : 3x - 5 = -(4x + 9) => 3x - 5 = -4x - 9 => 3x + 4x = -9 + 5 => 7x = -4 => x = -4/7 (ko thỏa mãn x thuộc Z)
1.
a, \(x-14=3x+18\)
\(\Rightarrow x-3x=18+14\)
\(\Rightarrow-2x=32\Rightarrow x=\frac{32}{-2}=-16\)
b, \(\left(x+7\right).\left(x-9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+7=0\\x-9=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-7\\x=9\end{cases}}}\)
c, \(\left|2x-5\right|-7=22\)
\(\Rightarrow\left|2x-5\right|=22+7\)
\(\Rightarrow\left|2x-5\right|=29\)
\(\Rightarrow\orbr{\begin{cases}2x+5=29\\2x-5=29\end{cases}}\Rightarrow\orbr{\begin{cases}2x=24\\2x=34\end{cases}\Rightarrow}\orbr{\begin{cases}x=12\\x=17\end{cases}}\)
d, \(\left(\left|2x\right|-5\right)-7=22\)
\(\Rightarrow\left(\left|2x\right|-5\right)=29\)
\(\Rightarrow\left|2x\right|=29+5\Rightarrow\left|2x\right|=34\Rightarrow x=\pm17\)
e, \(\left|x+3\right|+\left|x+9\right|+\left|x+5\right|=4x\)
Vì \(\left|x+3\right|\ge0;\left|x+9\right|\ge0;\left|x+5\right|\ge0;4x\ge0\)
Nên \(\left|x+3\right|+\left|x+9\right|+\left|x+5\right|=4x\ge0\)
\(\Rightarrow\left|x+3\right|>0\Rightarrow\left|x+3\right|=x+3\)
\(\left|x+9\right|>0\Rightarrow\left|x+9\right|=x+9\)
\(\left|x+5\right|>0\Rightarrow\left|x+5\right|=x+5\)
Ta có :
\(x+3+x+9+x+5=4x\)
\(\Rightarrow3x+\left(3+9+5\right)=4x\)
\(\Rightarrow4x-3x=17\)
\(\Rightarrow x=17\)
2. a , b sai đề bn
c, \(\left(5x+1\right).\left(y-1\right)=4\)
\(\Rightarrow\left(5x+1\right).\left(y-1\right)\inƯ\left(4\right)\)
\(\text{ }Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Ta có bảng sau :
5x+1 | 1 | -1 | 2 | -2 | 4 | -4 |
y-1 | -4 | 4 | -2 | 2 | -1 | 1 |
x | 0 | -2/5 | 1/5 | -3/5 | 3/5 | -1 |
y | -3 | 5 | -1 | 3 | 0 | 2 |
d, \(5xy-5x+y=5\)
\(\Rightarrow\left(5xy-5x\right)+y=5\)
\(\Rightarrow5x.\left(y-1\right)+y=5\)
\(\Rightarrow\left(5x+1\right).\left(y-1\right)=4\)
\(\Rightarrow\left(5x+1\right).\left(y-1\right)\inƯ\left(4\right)\)
\(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Ta có bảng sau :
5x+1 | 1 | -1 | 2 | -2 | 4 | -4 |
y-1 | -4 | 4 | -2 | 2 | -1 | 1 |
x | 0 | -2 | 1/5 | -3/5 | 3/5 | -1 |
y | -3 | 5 | -1 | 3 | 0 | 2 |
a) \(\left(2x+10\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\)\(2\left(x+5\right)\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\)\(x+5=0\) \(\Leftrightarrow\)\(x=-5\)
hoặc \(x-3=0\) hay \(x=3\)
hoặc \(x+3=0\) hay \(x=-3\)
Vậy....