\(\dfrac{10x+25}{2x+4}\) đạt giá trị nhỏ nhấ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2023

Do `x ∈ Z => 2x` là só chẵn `=> 2x + 4` là số chẵn

`A = (10x + 25)/(2x+4)`

`= (10x + 20)/(2x+4) + 5/(2x+4)`

`= 5 + 5/(2x+4)`

`A ` có giá trị nhỏ nhất khi `5/(2x+4)` có giá trị nhỏ nhất

`<=> 2x+4` là số nguyên âm nhỏ nhất

`<=> 2x + 4 = -2`

`<=> 2x = -6`

`<=> x = -3`

Vậy `A ` đạt giá trị nhỏ nhất `<=> x = -3`

7 tháng 3 2019

\(A=\frac{x-5}{x-3}=\frac{x-3-2}{x-3}=\frac{x-3}{x-3}-\frac{2}{x-3}=1-\frac{2}{x-3}\)

Để A đạt giá trị nhỏ nhất thì \(\frac{2}{x-3}\) đạt giá trị lớn nhất \(\Leftrightarrow x-3\)đạt giá trị nguyên dương nhỏ nhất \(\Leftrightarrow x-3=1\Leftrightarrow x=4\)

Vậy với x=4 thì A đạt giá trị nhỏ nhất.

Để \(P=\frac{x-1}{x-3}\left(x∈Z ; x ≠0\right)\) nhận giá trị nguyên 

=> x - 1 ⋮ x - 3

=> ( x - 3 ) + 2 ⋮ x - 3

Mà x - 3 ⋮ x - 3 ∀ x ∈ Z

=> 2 ⋮ x - 3

=> x - 3 ∈ Ư(2)

Ta có bảng ;

x-3-2-112
x-1245
\(P=\frac{x-1}{x-3}\)\(\frac{1}{2}\)( loại ) ( do P nhận giá trị nguyên )-1 ( t/m )3 ( t/m )2 ( t/m )

Để P nhận giá trị nguyên lớn nhất => P = 3 và x = 4

VÌ ( 3 - x )2 ≥ 0 ∀ x ∈ Z

=> ( 3 - x )2 - 4 ≥ 0 - 4

=> Để A = ( 3 - x )2 - 4 nhận giá trị nhỏ nhất thì A = -4

<=> ( 3 - x )2 = 0

<=> 3 - x = 0

<=> x = 3

26 tháng 8 2021

kakashi hahahaha

NV
1 tháng 3 2023

\(A=\dfrac{3\left(x-1\right)+10}{x-1}=3+\dfrac{10}{x-1}\)

A đạt giá trị nhỏ nhất khi \(\dfrac{10}{x-1}\) đạt giá trị nhỏ nhất

\(\Rightarrow x-1\) là số âm lớn nhất

Mà x nguyên \(\Rightarrow x-1\) là số nguyên âm lớn nhất

\(\Rightarrow x-1=-1\)

\(\Rightarrow x=0\)

19 tháng 8 2017

a) \(C=\frac{5}{x-2}\)

=> x-2 thuộc Ư(5) = {-1,-5,1,5}

Ta có bảng :

x-2-1-515
x1-337

Vậy x = {-3,1,3,7}

b) Ta có : \(\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=\frac{x-4}{x-4}+\frac{9}{x-4}=1+\frac{9}{x-4}\)

=> x-4 thuộc Ư(9) = {-1,-3,-9,1,3,9}

Ta có bảng :

x-4-1-3-9139
x31-55713

Vậy x = {-5,1,3,5,7,13}

26 tháng 5 2018

\(a)\) Ta có : 

\(\left|\frac{1}{2}-x\right|\ge0\) ( với mọi x ) 

\(\Rightarrow\)\(A=0,6+\left|\frac{1}{2}-x\right|\ge0,6\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\frac{1}{2}-x=0\)

\(\Leftrightarrow\)\(x=\frac{1}{2}\)

Vậy GTNN của \(A\) là \(0,6\) khi \(x=\frac{1}{2}\)

Chúc bạn học tốt ~ 

26 tháng 5 2018

\(b)\) Ta có : 

\(\left|2x+\frac{2}{3}\right|\ge0\) ( với mọi x ) 

\(\Rightarrow\)\(-\left|2x+\frac{2}{3}\right|\le0\) ( với mọi x ) 

\(\Rightarrow\)\(B=\frac{2}{3}-\left|2x+\frac{2}{3}\right|\le\frac{2}{3}\) ( cộng hai vế cho \(\frac{2}{3}\) ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(2x+\frac{2}{3}=0\)

\(\Leftrightarrow\)\(2x=\frac{-2}{3}\)

\(\Leftrightarrow\)\(x=\frac{-2}{3}:2\)

\(\Leftrightarrow\)\(x=\frac{-2}{3}.\frac{1}{2}\)

\(\Leftrightarrow\)\(x=\frac{-1}{3}\)

Vậy GTLN của \(B\) là \(\frac{2}{3}\) khi \(x=\frac{-1}{3}\)

Chúc bạn học tốt ~ 

11 tháng 7 2018

Bài 1:Vì \(\left(x+1\right)^{2008}\ge0\) nên \(-\left(x+1\right)^{2008}\le0\)

\(\Rightarrow P=2010-\left(x+1\right)^{2008}\le2010-0=2010\)

Nên P lớn nhất khi \(P=2010\Rightarrow\left(x+1\right)^{2008}=0\Rightarrow x+1=0\Rightarrow x=-1\)

Bài 2:Vì 5>0 nên C nhỏ nhất khi \(\left|x\right|-2< 0\) và \(\left|x\right|-2\) lớn nhất

Nên \(\left|x\right|-2=-1\Rightarrow\left|x\right|=1\Rightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)

11 tháng 7 2018

\(P=2010-\left(x+1\right)^{2008}\)

\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\)

\(\left[\left(x+1\right)^{1004}\right]^2\ge0\)

\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\le2010\)

Để \(P_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2=0\)

\(\Rightarrow P=2010-0=2010\)

(Dấu"=" xảy ra <=> \(x=-1\)

Bài 2:

Để \(C_{Min}\Rightarrow|x|-2_{Min}\Rightarrow|x|_{Min}\Rightarrow|x|=1\Rightarrow|x|-2=-1\)

\(\Rightarrow C=-5\)

Vì để C Min => /x/ -2 là số nguyễn âm lơn nhất có thể