Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{x-5}{x-3}=\frac{x-3-2}{x-3}=\frac{x-3}{x-3}-\frac{2}{x-3}=1-\frac{2}{x-3}\)
Để A đạt giá trị nhỏ nhất thì \(\frac{2}{x-3}\) đạt giá trị lớn nhất \(\Leftrightarrow x-3\)đạt giá trị nguyên dương nhỏ nhất \(\Leftrightarrow x-3=1\Leftrightarrow x=4\)
Vậy với x=4 thì A đạt giá trị nhỏ nhất.
Để \(P=\frac{x-1}{x-3}\left(x∈Z ; x ≠0\right)\) nhận giá trị nguyên
=> x - 1 ⋮ x - 3
=> ( x - 3 ) + 2 ⋮ x - 3
Mà x - 3 ⋮ x - 3 ∀ x ∈ Z
=> 2 ⋮ x - 3
=> x - 3 ∈ Ư(2)
Ta có bảng ;
x-3 | -2 | -1 | 1 | 2 |
x | -1 | 2 | 4 | 5 |
\(P=\frac{x-1}{x-3}\) | \(\frac{1}{2}\)( loại ) ( do P nhận giá trị nguyên ) | -1 ( t/m ) | 3 ( t/m ) | 2 ( t/m ) |
Để P nhận giá trị nguyên lớn nhất => P = 3 và x = 4
VÌ ( 3 - x )2 ≥ 0 ∀ x ∈ Z
=> ( 3 - x )2 - 4 ≥ 0 - 4
=> Để A = ( 3 - x )2 - 4 nhận giá trị nhỏ nhất thì A = -4
<=> ( 3 - x )2 = 0
<=> 3 - x = 0
<=> x = 3
\(A=\dfrac{3\left(x-1\right)+10}{x-1}=3+\dfrac{10}{x-1}\)
A đạt giá trị nhỏ nhất khi \(\dfrac{10}{x-1}\) đạt giá trị nhỏ nhất
\(\Rightarrow x-1\) là số âm lớn nhất
Mà x nguyên \(\Rightarrow x-1\) là số nguyên âm lớn nhất
\(\Rightarrow x-1=-1\)
\(\Rightarrow x=0\)
a) \(C=\frac{5}{x-2}\)
=> x-2 thuộc Ư(5) = {-1,-5,1,5}
Ta có bảng :
x-2 | -1 | -5 | 1 | 5 |
x | 1 | -3 | 3 | 7 |
Vậy x = {-3,1,3,7}
b) Ta có : \(\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=\frac{x-4}{x-4}+\frac{9}{x-4}=1+\frac{9}{x-4}\)
=> x-4 thuộc Ư(9) = {-1,-3,-9,1,3,9}
Ta có bảng :
x-4 | -1 | -3 | -9 | 1 | 3 | 9 |
x | 3 | 1 | -5 | 5 | 7 | 13 |
Vậy x = {-5,1,3,5,7,13}
\(a)\) Ta có :
\(\left|\frac{1}{2}-x\right|\ge0\) ( với mọi x )
\(\Rightarrow\)\(A=0,6+\left|\frac{1}{2}-x\right|\ge0,6\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\frac{1}{2}-x=0\)
\(\Leftrightarrow\)\(x=\frac{1}{2}\)
Vậy GTNN của \(A\) là \(0,6\) khi \(x=\frac{1}{2}\)
Chúc bạn học tốt ~
\(b)\) Ta có :
\(\left|2x+\frac{2}{3}\right|\ge0\) ( với mọi x )
\(\Rightarrow\)\(-\left|2x+\frac{2}{3}\right|\le0\) ( với mọi x )
\(\Rightarrow\)\(B=\frac{2}{3}-\left|2x+\frac{2}{3}\right|\le\frac{2}{3}\) ( cộng hai vế cho \(\frac{2}{3}\) )
Dấu "=" xảy ra \(\Leftrightarrow\)\(2x+\frac{2}{3}=0\)
\(\Leftrightarrow\)\(2x=\frac{-2}{3}\)
\(\Leftrightarrow\)\(x=\frac{-2}{3}:2\)
\(\Leftrightarrow\)\(x=\frac{-2}{3}.\frac{1}{2}\)
\(\Leftrightarrow\)\(x=\frac{-1}{3}\)
Vậy GTLN của \(B\) là \(\frac{2}{3}\) khi \(x=\frac{-1}{3}\)
Chúc bạn học tốt ~
Bài 1:Vì \(\left(x+1\right)^{2008}\ge0\) nên \(-\left(x+1\right)^{2008}\le0\)
\(\Rightarrow P=2010-\left(x+1\right)^{2008}\le2010-0=2010\)
Nên P lớn nhất khi \(P=2010\Rightarrow\left(x+1\right)^{2008}=0\Rightarrow x+1=0\Rightarrow x=-1\)
Bài 2:Vì 5>0 nên C nhỏ nhất khi \(\left|x\right|-2< 0\) và \(\left|x\right|-2\) lớn nhất
Nên \(\left|x\right|-2=-1\Rightarrow\left|x\right|=1\Rightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)
\(P=2010-\left(x+1\right)^{2008}\)
\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\)
\(\left[\left(x+1\right)^{1004}\right]^2\ge0\)
\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\le2010\)
Để \(P_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2=0\)
\(\Rightarrow P=2010-0=2010\)
(Dấu"=" xảy ra <=> \(x=-1\)
Bài 2:
Để \(C_{Min}\Rightarrow|x|-2_{Min}\Rightarrow|x|_{Min}\Rightarrow|x|=1\Rightarrow|x|-2=-1\)
\(\Rightarrow C=-5\)
Vì để C Min => /x/ -2 là số nguyễn âm lơn nhất có thể
Do `x ∈ Z => 2x` là só chẵn `=> 2x + 4` là số chẵn
`A = (10x + 25)/(2x+4)`
`= (10x + 20)/(2x+4) + 5/(2x+4)`
`= 5 + 5/(2x+4)`
`A ` có giá trị nhỏ nhất khi `5/(2x+4)` có giá trị nhỏ nhất
`<=> 2x+4` là số nguyên âm nhỏ nhất
`<=> 2x + 4 = -2`
`<=> 2x = -6`
`<=> x = -3`
Vậy `A ` đạt giá trị nhỏ nhất `<=> x = -3`