Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\left(2x-3\right)\left(x+1\right)< 0\)
\(\Leftrightarrow\begin{cases}2x-3>0\\x+1< 0\end{cases}\) hoặc \(\begin{cases}2x-3< 0\\x+1>0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>\frac{3}{2}\\x< -1\end{cases}\) (loại) hoặc \(\begin{cases}x< \frac{3}{2}\\x>-1\end{cases}\)
\(\Leftrightarrow-1< x< \frac{3}{2}\)
b) \(\left(x-\frac{1}{2}\right)\left(x+3\right)>0\)
\(\Leftrightarrow\begin{cases}x-\frac{1}{2}>0\\x+3>0\end{cases}\) hoặc \(\begin{cases}x-\frac{1}{2}< 0\\x+3< 0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>\frac{1}{2}\\x>-3\end{cases}\) hoặc \(\begin{cases}x< \frac{1}{2}\\x< -3\end{cases}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x>\frac{1}{2}\\x< -3\end{array}\right.\)
c) Sai đề phải là \(\frac{x}{\left(x+3\right)\left(x+7\right)}\)
Có: \(\frac{3}{\left(x+3\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+3\right)\left(x+17\right)}\)
\(\Leftrightarrow\)\(\frac{1}{x+3}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+7}=\frac{x}{\left(x+3\right)\left(x+7\right)}\)
\(\Leftrightarrow\)\(\frac{1}{x+3}-\frac{1}{x+7}=\frac{x}{\left(x+3\right)\left(x+7\right)}\)
\(\Leftrightarrow\)\(\frac{4}{\left(x+3\right)\left(x+7\right)}=\frac{x}{\left(x+3\right)\left(x+7\right)}\)
\(\Leftrightarrow x=4\)
Lời giải:
Ta luôn có tính chất sau : \(a^2\geq 0, \forall a\in\mathbb{R}\)
Như vậy:
a) \((x-2012)^2\geq 0, \forall x\in\mathbb{R}\Rightarrow (x-2012)^2_{\min}=0\).
Dấu "=" xảy ra khi $x-2012=0\Leftrightarrow x=2012$
b)
\((5x-2)^2\geq 0, \forall x\in\mathbb{R}\Rightarrow (5x-2)^2+100\geq 0+100=100\)
Vậy \([(5x-2)^2+100]_{\min}=100\). Dấu "=" xảy ra khi \(5x-2=0\leftrightarrow x=\frac{2}{5}\)
c)
\((2x+1)^4=[(2x+1)^2]^2\geq 0, \forall x\in\mathbb{R}\Rightarrow (2x+1)^4-99\geq 0-99=-99\)
Vậy \([(2x+1)^4-99]_{\min}=-99\). Dấu "=" xảy ra khi $2x+1=0\leftrightarrow x=\frac{-1}{2}$
d)
\((x^2-36)^6=[(x^2-36)^3]^2\geq 0, \forall x\in\mathbb{R}\)
\(|y-5|\geq 0\) (theo tính chất trị tuyệt đối)
\(\Rightarrow (x^2-36)^6+|y-5|+2013\geq 0+0+2013=2013\)
Vậy GTNN của biểu thức đã cho là $2013$. Dấu "=" xảy ra khi \(\left\{\begin{matrix} x^2-36=0\\ y-5=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\pm 6\\ y=5\end{matrix}\right.\)
a)\(5^x.\left(5^3\right)^2=625\)
\(5^x.5^6=5^4\)
\(5^x=5^{-2}\)
\(x=-2\)
b)\(27< 81^3:3^x< 243\)
\(3^3< \left(3^4\right)^3:3^x< 3^5\)
\(3^3< 3^{12}:3^x< 3^5\)
\(3^{12}:3^x=3^4\)
\(3^x=3^3\)
\(x=3\)
c)\(\left(5x+1\right)^2=\frac{36}{49}\)
\(\left(5x+1\right)^2=\left(\frac{6}{7}\right)^2\)
\(5x+1=\frac{6}{7}\)
\(5x=\frac{-1}{7}\)
\(x=\frac{-1}{35}\)
d)\(\left(x-\frac{2}{9}\right)^3=\left(\frac{2}{3}\right)^6\)
\(\left(x-\frac{2}{9}\right)^3=\left[\left(\frac{2}{3}\right)^2\right]^3\)
\(x-\frac{2}{9}=\frac{4}{9}\)
\(x=\frac{6}{9}=\frac{2}{3}\)
\(5^x.\left(5^3\right)^2=625\)
\(\Rightarrow5^x.5^6=5^4\)
\(\Rightarrow5^{x+6}=5^4\Rightarrow x+6=4\Rightarrow x=-2\)
Đề sai rồi bạn : Phải là :
\(5^x:\left(5^3\right)^2=625\)
\(\Rightarrow5^x:5^6=5^4\)
\(\Rightarrow5^{x-6}=5^4\)
\(\Rightarrow x-6=4\Rightarrow x=10\)
Nhứng nếu đề đúng thì bạn có thể lấy KQ trên
Với những bài thế này thì phải chia trường hợp để phá ngoặc.
TH1 : \(x< -2;\)có:
\(\Rightarrow-\left(5x-4\right)=-\left(x+2\right)\)
\(4-5x=-x-2\)
\(6=-4x\Rightarrow x=-\frac{3}{2}>-2\)( Không thỏa mãn )
TH2 : \(-2\le x< \frac{4}{5};\)ta có :
\(-\left(5x-4\right)=x+2\)
\(4-5x=x+2\)
\(2=6x\)
\(x=\frac{1}{3}\) ( thỏa mãn)
TH3 : \(x\ge\frac{4}{5};\)có :
\(5x-4=x+2\)
\(4x=6\)
\(x=\frac{3}{2}\)(thỏa mãn )
Vậy \(\left[\begin{array}{nghiempt}x=\frac{1}{3}\\x=\frac{3}{2}\end{array}\right.\)
a: =>|5x+4|=19
=>5x+4=19 hoặc 5x+4=-19
=>5x=15 hoặc 5x=-23
=>x=3 hoặc x=-23/5
b: =>3|2x-9|=33
=>|2x-9|=11
=>2x-9=11 hoặc 2x-9=-11
=>2x=20 hoặc 2x=-2
=>x=10 hoặc x=-1
d: =>|17x-5|=|17x+5|
=>17x-5=17x+5 hoặc 17x-5=-17x-5
=>34x=0
hay x=0