Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(8< 2^x\le2^9.2^{-5}\)(1)
Xét :
\(2^9.2^{-5}=2^9.\frac{1}{2^5}=2^4\)(2)
Thay (2) vào (1) ta có :
\(\Rightarrow2^3< 2^x\le2^4\)
\(\Rightarrow2^x=2^4\)
\(\Rightarrow x=4\)
\(a,\Rightarrow2^3< 2^x\le2^4\Rightarrow x=4\\ b,\Rightarrow3^3< 3^{12}:3^x< 3^5\\ \Rightarrow3^3< 3^{12-x}< 3^5\\ \Rightarrow12-x=4\Rightarrow x=8\)
a) \(8< 2^x\le2^9.2^{-5}\)
\(\Leftrightarrow2^3< x\le2^{9-5}\)
\(\Leftrightarrow2^3< 2^x\le2^4\)
\(\Leftrightarrow3< x\le4\Leftrightarrow x=4\)
b) \(27< 81^3:3^x< 243\)
\(\Leftrightarrow3^2< \left(3^4\right)^3:3^x< 3^5\)
\(\Leftrightarrow3^2< 3^{12}:3^x< 3^5\)
\(\Leftrightarrow3^2< 3^{12-x}< 3^5\)
\(\Leftrightarrow2< 12-x< 5\)
\(\Leftrightarrow\hept{\begin{cases}x=8\\x=9\end{cases}}\)
a)\(32^{-n}\cdot16^n=2048\)
\(\left(2^5\right)^{-n}\cdot\left(2^4\right)^n\)=2048
\(2^{-5n}\cdot2^{4n}\)=\(2^{11}\)
\(2^{-5n+4n}=2^{11}\)
\(2^{-x}=2^{11}\)
\(\Rightarrow x=-11\)
b)\(2^{-1}\cdot2^n+4\cdot2^n=9\cdot2^5\)
\(\frac{1}{2}\cdot2^n+4\cdot2^n=288\)
\(2^n\left(\frac{1}{2}+4\right)=288\)
\(2^n\cdot\frac{9}{2}=288\)
\(2^n=288:\frac{9}{2}\)
\(2^n=64\)
\(2^n=2^6\)
\(\Rightarrow n=6\)
a) 32-n . 16n = 2048
\(\frac{1}{32n}\) . 16n = 2048
\(\frac{1}{2^n.16^n}\) . 16n = 2048
\(\frac{1}{2^n}\) = 2048
2-n = 2048
2-n = 211
\(\Rightarrow\) -n = 11
\(\Rightarrow\) n = -11
Vậy n = -11
\(\Leftrightarrow2^n\left(\frac{1}{2}+4\right)=9\cdot2^5\Leftrightarrow2^n\cdot\frac{9}{2}=9\cdot2^5\Leftrightarrow2^n=2^6\Leftrightarrow n=6\)
a,\(8< 2^x\le2^9.2^{-5}\)
\(2^3< 2^x\le2^4\)
\(\Rightarrow x=4\)
b, \(27< 81^3.3^x< 243\)
\(3^3< 3^{12-x}< 3^5\)
\(\Rightarrow3< 12-x< 5\)
12-x=4
x=8
c,\(\left(\frac{2}{5}\right)^x>\left(\frac{2}{5}\right)^3.\left(\frac{2}{5}\right)^2\)
\(\left(\frac{2}{5}\right)^x>\left(\frac{2}{5}\right)^5\)
\(\Rightarrow x>5\)
x=6;7;8........
\(a,\Rightarrow\left(x-\dfrac{1}{2}\right)^3=\dfrac{1}{27}=\left(\dfrac{1}{3}\right)^3\\ \Rightarrow x-\dfrac{1}{2}=\dfrac{1}{3}\Rightarrow x=\dfrac{5}{6}\\ b,\Rightarrow\left(\dfrac{3}{2}\right)^{2x-1}:\left(\dfrac{3}{2}\right)^9=\left(\dfrac{3}{2}\right)^4\\ \Rightarrow2x-1-9=4\\ \Rightarrow2x=14\Rightarrow x=7\\ c,\Rightarrow2^{x-1}+2^{x+2}=9\cdot2^5\\ \Rightarrow2^{x-1}\left(1+2^3\right)=9\cdot2^5\\ \Rightarrow2^{x-1}\cdot9=9\cdot2^5\\ \Rightarrow2^{x-1}=2^5\Rightarrow x-1=5\Rightarrow x=6\\ d,\Rightarrow\left(2x+1\right)^2=12+69=81\\ \Rightarrow\left[{}\begin{matrix}2x+1=9\\2x+1=-9\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-5\end{matrix}\right.\)
1. \(2^x=4^{y-1}\Rightarrow2^x=\left(2^2\right)^{y-1}=2^{2y-2}\Rightarrow x=2y-2\)
\(27^y=3^{x+8}\Rightarrow\left(3^3\right)^y=3^{x+8}\Rightarrow3^{3y}=3^{x+8}\Rightarrow3y=x+8\)
ta có: x=2y-2
mà 3y=x+8
=> 3y=2y-2+8
=> 3y-2y+2-8=0
=> y-6=0
=> y=6
x=2y-2
=> x=2.6-2=12-2=10
Vậy x=10; y=6.
2.a.\(\left(-\frac{1}{3}\right)^{n-5}=\frac{1}{81}\)
\(\Rightarrow \left(-\frac{1}{3}\right)^{n-5}=\left(-\frac{1}{3}\right)^4\)
=> n-5=4
=> n=4+5
=> n=9
b.\(2^{-1}.2^n+4.2^n=9.2^5\)
\(\Rightarrow2^n.\left(2^{-1}+4\right)=9.32\)
=> 2n.(2-1+4)=288
=> 2n.(1/2+4)=288
=> 2n.9/2=288
=> 2n=288:9/2
=> 2n=64
=> 2n=26
Vậy n=6.
8<2x<29.2-5
23 < 2x< 24
=> x thuộc rỗng ( viết bằng kí hiệu )