Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\frac{1}{2}+\left(\frac{2}{56}+\frac{2}{72}+...+\frac{2}{x\left(x+1\right)}\right)=\frac{3}{10}\)
\(\Leftrightarrow\frac{1}{2}+2.\left(\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{3}{10}\)
\(\Leftrightarrow2.\left(\frac{1}{7}-\frac{1}{x+1}\right)=\frac{3}{10}-\frac{1}{2}=-\frac{1}{5}\)
\(\Leftrightarrow\frac{1}{7}-\frac{1}{x+1}=-\frac{1}{5}:2=-\frac{1}{10}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{7}-\left(-\frac{1}{10}\right)=\frac{17}{70}\)
\(\Rightarrow17x+17=70\)
=> không tồn tại n vì n là số tự nhiên
\(\frac{\left(\frac{518}{19}-\frac{342}{13}\right).\left(\frac{177}{236}+\frac{76}{236}-\frac{6}{236}\right)}{\left(\frac{3}{4}+x\right).\frac{27}{33}}=1\)
=>\(\frac{\left(\frac{6734}{247}-\frac{6498}{247}\right).\frac{247}{236}}{\left(\frac{3}{4}+x\right).\frac{27}{33}}=1\)
=>(3/4+x)*27/33=236/247*247/236=1
3/4+x=1:27/33=33/27
x=33/27-3/4=132/108-81/108
x=51/108
Vậy x=51/108
ta có : ( -5/28 +7/4 + 8/35 ) : (- 69/20)
= ( -25/140 + 245/140 + 32/140 ) x (-20/69)
= (252/140) x (-20/69)
= (9/5) x (-20/69)
= (- 12/23)
tính nhanh:
2 x 3/7 + (2/9 - 10/7) - 5/3 x 9
= 6/7 + 2/9 - 10/7 - 5/3 x 9 = 6/7 + 2/9 - 10/7 - 15
= (6/7 - 10/7 ) + (2/9 - 135/9) = ( - 4/7 ) + (-133/9 )
= (- 36/63) + (-931/63)
= (- 967/63)
1/3.4+1/4.5+1/5.6+.....+1/x(x+1)=3/10
1/3-1/4+1/4-1/5+1/5-........-1/x+1/x-1/x+1=3/10
=>1/3-1/x+1=3/10
1/x+1=3/10-1/3=1/30
=>x+1=30
x=30-1
x=29
Ta có :
\(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{x\left(x+1\right)}=\frac{3}{10}\)
=>\(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{3}{10}\)
=>\(\frac{1}{3}-\frac{1}{x+1}=\frac{3}{10}\)
=>\(\frac{1}{x+1}=\frac{1}{3}-\frac{3}{10}\)
=>\(\frac{1}{x+1}=\frac{1}{30}\)
=>\(x+1=30\)
=>\(x=30-1\)
=>\(x=29\)
Vậy \(x=29\)
\(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}=\frac{n+2}{n\left(n+1\right)\left(n+2\right)}-\frac{n}{n\left(n+1\right)\left(n+2\right)}=\frac{n+2-n}{n\left(n+1\right)\left(n+2\right)}\)=\(\frac{2}{n\left(n+1\right)\left(n+2\right)}\)
Mình nghĩ đề sai
thiếu 2/n*(n+1)*(n+2)=1/n*(n+1)-1/(n+1)*(n+2) nhé tui làm mò thôi ai ngờ ra công thức
VD:2/2*3*4=1/2*3-1/3*4=1/6-1/12=1/12
mà 2/2*3*4=2*24=1/12
đk: \(\begin{cases}x+2\ne0\\4-x>0\\6+x>0\end{cases}\)
ta có \(3\log_{\frac{1}{4}}\left(x+2\right)-3=3\log_{\frac{1}{4}}\left(4-x\right)+3\log_{\frac{1}{4}}\left(6+x\right)\) suy ra \(\log_{\frac{1}{4}}\left(x+2\right)-\log_{\frac{1}{4}}\frac{1}{4}=\log_{\frac{1}{4}}\left(4-x\right)\left(6+x\right)\) suy ra \(\log_{\frac{1}{4}}\left(x+2\right).\frac{1}{4}=\log_{\frac{1}{4}}\left(4-x\right)\left(6+x\right)\) suy ra \(\frac{x+2}{4}=\left(4-x\right)\left(6+x\right)\)
giải pt tìm ra x
đối chiếu với đk của bài ta suy ra đc nghiệm của pt
Ta có:
\(A=\frac{1}{3}+\frac{1}{6}+...+\frac{2}{x\left(x+1\right)}\)
\(\Rightarrow2A=2.\left(\frac{1}{3}+\frac{1}{6}+...+\frac{2}{x\left(x+1\right)}\right)=2.\frac{2015}{2017}\)
\(=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{4030}{2017}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{4030}{2017}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x-1}-\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}=\frac{4030}{2017}\)
\(=\frac{1}{2}-\frac{1}{x+1}=\frac{4030}{2017}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{4030}{2017}\)
Bạn xem lại đề
ta có
1/1*2+1/2*3+1/3*4+...+1/n*(n+1)=1/1-1/2+1/2-1/3+1/3-...-1/n+1= 33/34 (quy tắc)
1 - 1/n+1=33/34
1/n+1=1/34
nên n =33
bạn ơi, mình biết làm bài này nhưng cho mình biết làm sao để viết phân số vậy