Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(x+3\right)\left(5-x\right)=0\\ \Rightarrow\left\{{}\begin{matrix}x+3=0\\5-x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)
\(c,x+17⋮x+3\\ x+3+14⋮x+3\\ 14⋮x+3\\ x+3\inƯ\left(14\right)=\left\{\pm14;\pm7\pm2;\pm1\right\}\)
Từ đó bạn tìm những giá trị của x nha!
a) \(B=5+5^2+5^3+...+5^{2022}\)
\(\Rightarrow5B=5^2+5^3+5^4+...+5^{2023}\)
\(\Rightarrow4B=5^{2023}-5\)
b) \(4B+5=5^X\)
Hay \(5^{2023}-5+5=5^X\)
\(5^{2023}=5^x\)
\(\Rightarrow x=2023\)
B = 5 + 52 + 53 +...+ 52022
5.B = 52 + 53 +....+ 52023
5B- B = 52023 - 5
4B = 52023 - 5
b, 4B + 5 = 5\(^x\) ⇒ 52023 - 5 + 5 = 5\(^x\)
5\(^{2023}\) = 5\(x\)
\(x\) = 2023
x.y-x.2=0
=> x.y = 0 và x.2 = 0
=> x = 0 hoặc y = 0 và x = 0.
Vậy x = 0, y = 0
\(\left|x\right|+13=20\)
\(\Rightarrow\left|x\right|=20-13\)
\(\Rightarrow\left|x\right|=7\)
\(\Rightarrow\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)
Bài 1 :
Gọi \(A=5+5^2+5^3+...+5^{98}+5^{99}\\ 5A=5^2+5^3+5^4+...+5^{99}+5^{100}\\ 5A-A=\left(5^2+5^3+5^4+...+5^{99}+5^{100}\right)-\left(5+5^2+5^3+...+5^{98}+5^{99}\right)\\ 4A=5^{100}-5\\ A=\dfrac{5^{100}-5}{4}\)
Bài 2:
\(\left(12x-4\right)\cdot8^{2022}=4\cdot8^{2023}\\ 12x-4=4\cdot8^{2023}:8^{2022}\\ 12x-4=4\cdot8\\ 12x-4=32\\ 12x=36\\ x=3\)
A= 1 + 5 + 52 + 5 3 + ... + 5800
5A= 5 + 52 + 53 + .... +5 800 + 5801
5A - A = 5801 - 1
4a = 5801 - 1
5801 - 1 +1 = 5n
⇒ 5801 = 5n ⇒ n = 801
co \(\frac{1}{9\cdot10}=\frac{1}{9}-\frac{1}{10}\)
\(\frac{1}{10\cdot11}=\frac{1}{10}-\frac{1}{11}\)
............
\(\frac{1}{x\left(x+1\right)}=\frac{1}{x}-\frac{1}{x+1}\)
nen \(\frac{1}{9\cdot10}+\frac{1}{10\cdot11}+...+\frac{1}{x\left(x+1\right)}\)
\(=\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}-...+\frac{1}{x}-\frac{1}{x+1}\)
=\(\frac{1}{9}-\frac{1}{x+1}\)
2 . ( \(\frac{1}{9\cdot10}+\frac{1}{10\cdot11}+...+\frac{1}{x\left(x+1\right)}\))
= 2 . ( \(\frac{1}{9}-\frac{1}{x+1}\)) = \(\frac{2}{9}-\frac{2}{x+1}\)