K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐKXĐ: \(x\ge0;x\ne1\)

\(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{3}{\sqrt{x}+3}\)

\(=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{3}{\sqrt{x}+3}\)

\(=\frac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{15\sqrt{x}-11-3x-7\sqrt{x}+6-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{-3x+5\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{-3x+3\sqrt{x}+2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{-3\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{\left(-3\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{-3\sqrt{x}+2}{\sqrt{x}+3}\)

Để A nguyên thì \(\frac{-3\sqrt{x}+2}{\sqrt{x}+3}\in z\)

\(\frac{-3\sqrt{x}+2}{\sqrt{x}+3}=\frac{-3\sqrt{x}-9+11}{\sqrt{x}+3}=-3+\frac{11}{\sqrt{x}+3}\)

\(\Rightarrow\sqrt{x}+3\inƯ\left(11\right)=\left(-11;-1;1;11\right)\)

\(\sqrt{x}+3=-11\Rightarrow\sqrt{x}=-14VN\)

\(\sqrt{x}+3=-1\Rightarrow\sqrt{x}=-4VN\)

*\(\sqrt{x}+3=1\Rightarrow\sqrt{x}=-2VN\)

*\(\sqrt{x}+3=11\Rightarrow\sqrt{x}=8\Rightarrow x=64\)

a: \(P=\dfrac{x-\sqrt{x}-1-\sqrt{x}+1}{x-1}\cdot\dfrac{4\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)^2}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)\cdot4\left(\sqrt{x}-2\right)}{\sqrt{x}\left(x-1\right)}=\dfrac{4}{x-1}\)

Để P nguyên dương thì x-1 thuộc {1;4;2}

=>x thuộc {2;5;3}

b: x+y+z=0

=>x=-y-z; y=-x-z; z=-x-y

\(P=\dfrac{x^2}{y^2+z^2-\left(y+z\right)^2}+\dfrac{y^2}{z^2+x^2-\left(x+z\right)^2}+\dfrac{z^2}{x^2+y^2-\left(x+y\right)^2}\)

\(=\dfrac{x^2}{-2yz}+\dfrac{y^2}{-2xz}+\dfrac{z^2}{-2xy}\)

\(=\dfrac{x^3+y^3+z^3}{2xyz}\cdot\left(-1\right)\)

\(=-\dfrac{\left(x+y\right)^3+z^3-3xy\left(x+y\right)}{2xyz}\)

\(=-\dfrac{\left(-z\right)^3+z^3-3xy\cdot\left(-z\right)}{2xyz}=-\dfrac{3}{2}\)

DD
10 tháng 6 2021

\(x^2-1+\sqrt{143}=a\Leftrightarrow x^2-1=a-\sqrt{143}\)

\(\frac{1}{x^2-1}-\sqrt{143}=\frac{1}{a-\sqrt{143}}-\sqrt{143}=\frac{a+\sqrt{143}}{a^2-143}-\sqrt{143}\)

\(=\frac{a}{a^2-143}+\frac{\sqrt{143}}{a^2-143}-\sqrt{143}\)

Để \(\frac{1}{x^2-1}-\sqrt{143}\)là số nguyên thì \(\frac{\sqrt{143}}{a^2-143}-\sqrt{143}\)hữu tỉ suy ra \(\frac{1}{a^2-143}-1=0\Leftrightarrow a=\pm12\).

Từ đây suy ra giá trị của \(x\)

5 tháng 8 2018

Bài 1:

\(\sqrt{24+8\sqrt{15}-\sqrt{9-4\sqrt{5}}}\)

\(=\sqrt{24+8\sqrt{15}-\left(\sqrt{5}-2\right)}\)

\(=\sqrt{26+8\sqrt{15}-\sqrt{5}}\)

Bài 2:

\(A=\sqrt{\frac{\left(x^2-3\right)^2+12x^2}{x^2}}+\sqrt{\left(x+2\right)^2-8x}\)

\(A=\sqrt{\frac{x^4+6x^2+9}{x^2}}\)

\(A=\frac{\sqrt{x^4+6x^2+9}}{\sqrt{x^2}}\)

\(A=\frac{\sqrt{\left(x^2+3\right)^2}}{x}\)

\(A=\frac{x^2+3}{x}\)

\(A=\frac{x^2+3}{x}+x-2\)

\(A=\frac{2x^2+3}{x}-2\)

wrecking ball sai rồi \(\frac{\sqrt{\left(x^2+3\right)^2}}{x}=\frac{trituyetdoix^2+3}{x}\) bằng