K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2021

Từ giả thiết  ta có \(P\left(k\right).\left(k+1\right)=k\)  

Đặt  \(Q\left(x\right)=\left(x+1\right).P\left(x\right)-x\)

Khi đó \(Q\left(k\right)=\left(k+1\right).P\left(k\right)-k=0\) thỏa mãn với mọi \(k\in\left\{0;1;2;3;4;.............;2020\right\}\)

Theo định lý  Bézout ta có

\(Q\left(x\right)=x.\left(x-1\right).\left(x-2\right).\left(x-3\right)....\left(x-2020\right).R\left(x\right)\)

Vì đa thức  \(P\left(x\right)\) có bậc là 2020 nên đa thức \(Q\left(x\right)\)  có bậc là 2021.

Suy ra đa thức \(R\left(x\right)\) có bậc là 0 , hay còn gọi là đa thức \(R\left(x\right)\) không  chứa biến số.

Đặt  \(R\left(x\right)=a\)  với \(a\in R\)

Khi đó đa thức \(Q\left(x\right)\) có dạng như sau :

\(Q\left(x\right)=a.x.\left(x-1\right).\left(x-2\right).\left(x-3\right)....\left(x-2020\right)\)
Mặt khác , ta lại có 

\(Q\left(x\right)=\left(x+1\right).P\left(x\right)-x\)

Thay \(x=-1\) ta có \(Q\left(-1\right)=1\)

Suy ra                 \(a.\left(-1\right).\left(-2\right).\left(-3\right).\left(-4\right).....\left(-2021\right)=1\)

Suy  ra                       \(a=\dfrac{-1}{2021!}\)

Khi đó đa thức \(Q\left(x\right)\)  có dạng như sau :

\(Q\left(x\right)=\dfrac{-1}{2021!}.x.\left(x-1\right).\left(x-2\right).\left(x-3\right)....\left(x-2020\right)\) 

Mặt khác ta lại có  \(Q\left(x\right)=\left(x+1\right).P\left(x\right)-x\)  

Thay  \(x=2021\) ta có 

\(Q\left(2021\right)=2022.P\left(2021\right)-2021\)  

\(\Rightarrow\dfrac{-1}{2021!}.2021.2020.....1=2022.P\left(2021\right)-2021\)

\(\Rightarrow-1=2022.P\left(2021\right)-2021\) 

\(\Rightarrow P\left(2021\right)=\dfrac{1010}{1011}\)

 

19 tháng 5 2022

tự hỏi tự trả lời ????

 

4 tháng 1 2022

\(x^2+y^2+z^2=xy+yz+zx\\ \Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=0\\ \Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\Leftrightarrow x=y=z\\ \text{Mà }x+y+z=-3\Leftrightarrow x=y=z=-1\\ \Leftrightarrow B=1-1+1=1\)

8 tháng 10 2020

x2 + 2y2 + z2 - 2xy - 2y - 4z + 5 = 0

<=> ( x2 - 2xy + y2 ) + ( y2 - 2y + 1 ) + ( z2 - 4z + 4 ) = 0

<=> ( x - y )2 + ( y - 1 )2 + ( z - 2 )2 = 0

Vì \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y-1\right)^2\ge0\\\left(z-2\right)^2\ge0\end{cases}}\forall x;y;z\)=> ( x - y )2 + ( y - 1 )2 + ( z - 2 )2\(\ge\)0\(\forall\)x ; y ; z

Dấu "=" xảy ra <=>\(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-1\right)^2=0\\\left(z-2\right)^2=0\end{cases}}\)<=>\(\hept{\begin{cases}x=y=1\\z=2\end{cases}}\)( 1 )

Thay ( 1 ) vào A , ta được :

\(A=\left(1-1\right)^{2020}+\left(1-2\right)^{2020}+\left(2-3\right)^{2020}=0+1+1=2\)

Vậy A = 2

8 tháng 10 2020

Ta có: \(x^2+2y^2+z^2-2xy-2y-4z+5=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+\left(z^2-4z+4\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-1\right)^2+\left(z-2\right)^2=0\)

Mà \(VT\ge0\left(\forall x,y,z\right)\) nên dấu "=" xảy ra khi:

\(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-1\right)^2=0\\\left(z-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=y=1\\z=2\end{cases}}\)