Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{a) }\left(x-1\right)^2+\left|y+3\right|=0\)
Vì \(\left(x-1\right)^2\text{ và }\left|y+3\right|\text{ đều }\ge0\)
nên để \( \left(x-1\right)^2+\left|y+3\right|=0\)
thì \(\left(x-1\right)^2=0\text{ và }\left|y+3\right|=0\)
\(\Rightarrow x-1=0\text{ và }y+3=0\)
\(\Rightarrow x=1\text{ và }y=-3\)
\(\text{b) }\left(x^2-9\right)^2+\left|2-6y\right|^5\le0\)
\(\text{vì }\left(x^2-9\right)^2\text{ và }\left|2-6y\right|^5\text{ đều }\ge0\)
Nên để \(\left(x^2-9\right)^2+\left|2-6y\right|^5\le0\)
Thì \(\left(x^2-9\right)^2+\left|2-6y\right|^5=0\)
hay \(\left(x^2-9\right)^2=0\text{ và }\left|2-6y\right|^5=0\)
\(\Rightarrow x^2-9=0\text{ và }2-6y=0\)
\(\Rightarrow x^2=9\text{ và }6y=2\)
\(\Rightarrow x=\pm3\text{ và }y=\frac{1}{3}\)
Câu c) làm tương tự nha
a, \({\mid x^2 + 4\mid}=4x\) (ĐK: x\(\geq\)0)
\(\implies \)\(x^2 +4= 4x\)
hoặc \(x^2+4=-4x\)
\(\implies\)\(x^2-4x+4=0\)
hoặc \(x^2+4x+4=0\)
\(\implies\)x=2 (t/m)
hoặc x=-2 (ko t/m)
Vậy x=2
b, \(\mid2-4x\mid=2x+1\)
(ĐK: \(x\geq-1/2\))
\(\implies\) 2 -4x =2x+1
hoặc 2 -4x = -2x-1
\(\implies\)x= 1/6 (t/m)
hoặc x= 3/2 (t/m)
Vậy x=1/6 hoặc x=3/2
c,\(\mid\mid x\mid-7\mid=x+5\) (đk: \(x\geq-5\) )
TH1: \(\mid x \mid -7= x+5\) \(\implies\)\(\mid x \mid =x+12 \) (đk:\(x\geq -12\) )
\(\implies\)x = x+12
hoặc -x =x+12
\(\implies\)vô nghiệm
hoặc x = -6 (ko t/m)
TH2: \(\mid x \mid -7= -x-5\) \(\implies\) \(\mid x \mid =-x+2\) (đk: \(x\leq2\) )
\(\implies\)x = -x+2
hoặc -x = -x+2
\(\implies\)x=1 (t/m)
hoặc vô nghiệm
Vậy x=1
Bài 2:
a) \(\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|-6x=0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=6x\)
Ta có: \(\left|x+1\right|\ge0;\left|x+2\right|\ge0;\left|x+4\right|\ge0;\left|x+5\right|\ge0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|\ge0\)
\(\Rightarrow6x\ge0\)
\(\Rightarrow x\ge0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=x+1+x+2+x+4+x+5=6x\)
\(\Rightarrow4x+12=6x\)
\(\Rightarrow2x=12\)
\(\Rightarrow x=6\)
Vậy x = 6
b) Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-2}{2}=\frac{y-3}{3}=\frac{z-3}{4}=\frac{2y-6}{6}=\frac{3z-9}{12}=\frac{x-2-2y+6+3z-9}{2-6+12}=\frac{\left(x-2y+3z\right)-\left(2-6+9\right)}{8}\)
\(=\frac{14-5}{8}=\frac{9}{8}\)
+) \(\frac{x-2}{2}=\frac{9}{8}\Rightarrow x-2=\frac{9}{4}\Rightarrow x=\frac{17}{4}\)
+) \(\frac{y-3}{3}=\frac{9}{8}\Rightarrow y-3=\frac{27}{8}\Rightarrow y=\frac{51}{8}\)
+) \(\frac{z-3}{4}=\frac{9}{8}\Rightarrow z-3=\frac{9}{2}\Rightarrow z=\frac{15}{2}\)
Vậy ...
c) \(5^x+5^{x+1}+5^{x+2}=3875\)
\(\Rightarrow5^x+5^x.5+5^x.5^2=3875\)
\(\Rightarrow5^x.\left(1+5+5^2\right)=3875\)
\(\Rightarrow5^x.31=3875\)
\(\Rightarrow5^x=125\)
\(\Rightarrow5^x=5^3\)
\(\Rightarrow x=3\)
Vậy x = 3
1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)
\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu
\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)
\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)
Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)
Ta có : \(\frac{x+1}{5}=\frac{x+2}{6}\)
\(\Rightarrow\left(x+1\right)6=5\left(x+2\right)\)
\(\Leftrightarrow6x+6=5x+10\)
\(\Leftrightarrow6x-5x=10-6\)
\(\Rightarrow x=4\)
\(\frac{x+1}{2}\)= \(\frac{8}{x+1}\)
x + 1 . x + 1 = 2 . 8
x . 2 = 16
x = 16 : 2
x = 8
a) bn nhân chéo lên rồi tính sau đó cho x sang 1 bên và đc x =1
b) x=1 ; y=-1 ; z= -2
c) x= 1,75
d) x=2 bởi vì cũng nhân chéo lên sẽ là ( x+ 2)^2 = 4^2 suy ra x+2 = 4
e) (x-1)^2 = -20 . 5 = -100 suy ra k có x thoa mãn
Chọn đáp án B.