Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{1}{2}x+\frac{5}{2}=\frac{7}{2}x-\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{2}x+\frac{5}{2}-\frac{7}{2}x=-\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{2}x-\frac{7}{2}x+\frac{5}{2}=-\frac{3}{4}\)
\(\Leftrightarrow-3x+\frac{5}{2}=-\frac{3}{4}\)
\(\Leftrightarrow-3x=-\frac{13}{4}\)
\(\Leftrightarrow x=-\frac{13}{4}:(-3)=-\frac{13}{4}:\frac{-3}{1}=-\frac{13}{4}\cdot\frac{-1}{3}=\frac{13}{12}\)
\(b,\frac{2}{3}x-\frac{2}{5}=\frac{1}{2}x-\frac{1}{3}\)
\(\Leftrightarrow\frac{2}{3}x-\frac{2}{5}-\frac{1}{2}x=-\frac{1}{3}\)
\(\Leftrightarrow\frac{2}{3}x-\frac{1}{2}x-\frac{2}{5}=-\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{6}x-\frac{2}{5}=-\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{6}x=\frac{1}{15}\)
\(\Leftrightarrow x=\frac{1}{15}:\frac{1}{6}=\frac{1}{15}\cdot6=\frac{6}{15}=\frac{2}{5}\)
\(c,\frac{1}{3}x+\frac{2}{5}(x+1)=0\)
\(\Leftrightarrow\frac{1}{3}x+\frac{2}{5}x+\frac{2}{5}=0\)
\(\Leftrightarrow\frac{11}{15}x=-\frac{2}{5}\)
\(\Leftrightarrow x=-\frac{6}{11}\)
d,e,f Tương tự
\(\left(2x-1\right).\left(2x-5\right)< 0.\)
Vì \(2x-1>2x-5\)nên
\(\Rightarrow\hept{\begin{cases}2x-1>0\\2x-5< 0\end{cases}\Rightarrow\hept{\begin{cases}2x>1\\2x< 5\end{cases}\Rightarrow}}\hept{\begin{cases}x>\frac{1}{2}\\x< \frac{5}{2}\end{cases}\Leftrightarrow\frac{1}{2}< x< \frac{5}{2}}\)
Vậy \(\frac{1}{2}< x< \frac{5}{2}\)thỏa mãn đề bài
a: \(\Leftrightarrow12x^2-10x-12x^2-28x=7\)
=>-38x=7
hay x=-7/38
b: \(\Leftrightarrow-10x^2-5x+9x^2+6x+x^2-\dfrac{1}{2}x=0\)
=>1/2x=0
hay x=0
c: \(\Leftrightarrow18x^2-15x-18x^2-14x=15\)
=>-29x=15
hay x=-15/29
d: \(\Leftrightarrow x^2+2x-x-3=5\)
\(\Leftrightarrow x^2+x-8=0\)
\(\text{Δ}=1^2-4\cdot1\cdot\left(-8\right)=33>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-1-\sqrt{33}}{2}\\x_2=\dfrac{-1+\sqrt{33}}{2}\end{matrix}\right.\)
e: \(\Leftrightarrow-15x^2+10x-10x^2-5x-5x=4\)
\(\Leftrightarrow-25x^2=4\)
\(\Leftrightarrow x^2=-\dfrac{4}{25}\left(loại\right)\)
\(\dfrac{1}{2}-3x+\left|x-1\right|=0\\ \Rightarrow3x+\left|x-1\right|=\dfrac{1}{2}-0\\ \Rightarrow3x+\left|x-1\right|=\dfrac{1}{2}\\ \Rightarrow\left|x-1\right|=\dfrac{1}{2}-3x\\ \Rightarrow\left[{}\begin{matrix}x-1=\dfrac{1}{2}-3x\\x-1=-\dfrac{1}{2}+3x\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x+3x=\dfrac{1}{2}+1\\x-3x=-\dfrac{1}{2}+1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}4x=\dfrac{3}{2}\\2x=\dfrac{1}{2}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{8}\\x=\dfrac{1}{4}\end{matrix}\right.\)
__
\(\dfrac{1}{2}\left|2x-1\right|+\left|2x-1\right|=x+1\\ \Rightarrow\left|2x-1\right|\cdot\left(\dfrac{1}{2}+1\right)=x+1\\ \Rightarrow\left|2x-1\right|\cdot\dfrac{3}{2}=x+1\\ \Rightarrow\left|2x-1\right|=x+1:\dfrac{3}{2}\\ \Rightarrow\left|2x-1\right|=x+\dfrac{2}{3}\\ \Rightarrow\left[{}\begin{matrix}2x-1=x+\dfrac{2}{3}\\2x-1=-x-\dfrac{2}{3}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}2x-x=\dfrac{2}{3}+1\\2x+x=-\dfrac{2}{3}+1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\3x=\dfrac{1}{3}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{1}{9}\end{matrix}\right.\)
a) (x+2)(x-3)<0
Để (x+2)(x-3)<0 <=> x+2 và x-3 trái dấu
Mà x+2 > x-3 => x+2> 0 và x-3 <0
=> x>-2 và x < 3
Vậy -2 < x < 3
b )4(3x+1)(5-2x)>0
Vì 4 > 0 , Để 4(3x+1)(5-2x)>0 <=> 3x+1 > 0 và 5-2x>0
<=> x>-1/3 và x < 5/2
Vậy -1/3 < x < 5/2
a) * Nếu 4x - 5 \(\ge\) 0 thì x \(\ge\) \(\dfrac{5}{4}\)
\(\Leftrightarrow\) \(3-2\left(4x-5\right)=\dfrac{2}{6}\)
\(\Leftrightarrow\) \(-8x=-3-10+\dfrac{2}{6}\)
\(\Leftrightarrow\) x = \(\dfrac{19}{12}\) (t/m)
* Nếu 4x - 5 < 0 thì x < \(\dfrac{5}{4}\)
\(\Leftrightarrow\) \(3-2\left(-4x+5\right)=\dfrac{2}{6}\)
\(\Leftrightarrow\) \(3+8x-10=\dfrac{2}{6}\)
\(\Leftrightarrow\) x = \(\dfrac{11}{12}\) (t/m)
b) Không hiểu đề :v
c) \(\left(7-3x\right)\left(2x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}7-3x=0\\2x+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
d) \(2x\left(5-3x\right)>0\)
\(\Rightarrow\left\{{}\begin{matrix}2x>0\\5-3x>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x< \dfrac{5}{3}\end{matrix}\right.\)
\(\Rightarrow0< x< \dfrac{5}{3}\)
e) \(\left(4-2x\right)\left(5x+3\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}4-2x< 0\\5x+3>0\end{matrix}\right.\\\left\{{}\begin{matrix}4-2x>0\\5x+3< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>2\\x< -\dfrac{3}{5}\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\x>-\dfrac{3}{5}\end{matrix}\right.\end{matrix}\right.\)
Loại TH1, nhận TH2
Vậy \(-\dfrac{3}{5}< x< 2\)
g) \(\left|3x+1\right|+\left|1-3x\right|=0\) (1)
* Nếu x < \(\dfrac{-1}{3}\)
PT (1) \(\Leftrightarrow-3x-1-1+3x=0\)
0x - 2 = 0
0x = 2 \(\Rightarrow\) PT vô nghiệm
* Nếu \(\dfrac{-1}{3}\le x\le\dfrac{1}{3}\)
PT (1) \(\Leftrightarrow3x+1-1+3x=0\)
6x = 0
x = 0 (t/m)
* Nếu x > \(\dfrac{1}{3}\)
PT (1) \(\Leftrightarrow3x+1+1-3x=0\)
0x + 2 = 0
0x = -2
PT vô nghiệm.
Vậy x = 0
a, \(3-2\left|4x-5\right|=\dfrac{2}{6}\)
\(\Rightarrow2\left|4x-5\right|=\dfrac{8}{3}\)
\(\Rightarrow\left|4x-5\right|=\dfrac{4}{3}\)
+) Xét \(x\ge\dfrac{5}{4}\) có:
\(4x-5=\dfrac{4}{3}\Rightarrow4x=\dfrac{19}{3}\Rightarrow x=\dfrac{19}{12}\) ( t/m )
+) Xét \(x< \dfrac{5}{4}\) có:
\(4x-5=\dfrac{-4}{3}\Rightarrow4x=\dfrac{11}{3}\Rightarrow x=\dfrac{11}{12}\) ( t/m )
Vậy...
b, tương tự
c, \(\left(7-3x\right)\left(2x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}7-3x=0\\2x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=\dfrac{-1}{2}\end{matrix}\right.\)
Vậy...
d, \(2x\left(5-3x\right)>0\)
\(\Rightarrow\left\{{}\begin{matrix}2x>0\\5-3x>0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}2x< 0\\5-3x< 0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x< \dfrac{3}{5}\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x< 0\\x>\dfrac{3}{5}\end{matrix}\right.\) (loại )
Vậy \(0< x< \dfrac{3}{5}\)
e, tương tự
g, \(\left|3x+1\right|+\left|1-3x\right|=0\)
\(\Rightarrow\left|3x+1\right|+\left|3x-1\right|=0\)
+) Xét \(x\ge\dfrac{1}{3}\) có:
\(3x+1+3x-1=0\)
\(\Rightarrow6x=0\)
\(\Rightarrow x=0\) ( ko t/m )
+) Xét \(\dfrac{-1}{3}\le x< \dfrac{1}{3}\) có:
\(3x+1+1-3x=0\)
\(\Rightarrow2=0\) ( vô lí )
+) Xét \(x< \dfrac{-1}{3}\) có:
\(-3x-1+1-3x=0\)
\(\Rightarrow-6x=0\Rightarrow x=0\) ( ko t/m )
Vậy ko có giá trị x thỏa mãn đề bài
(2\(x\) - 1).(2\(x\) - 5) < 0
Lập bảng ta có:
Theo bảng trên ta có: \(\dfrac{1}{2}\) < \(x\) < \(\dfrac{5}{2}\)
(3 - 2\(x\)).(\(x\) + 2) > 0
Lập bảng ta có:
Theo bảng trên ta có: - 2 < \(x\) < \(\dfrac{3}{2}\)