Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x^4-x^3-2x^2-x^3+x^2+2x-x^2+x+2=0\)
\(\Leftrightarrow x^2\left(x^2-x-2\right)-x\left(x^2-x-2\right)-1\left(x^2-x-2\right)=0\)
\(\Leftrightarrow\left(x^2-x-1\right)\left(x^2-x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-1=0\\x^2-x-2=0\end{matrix}\right.\)
a. \(\left(2x-3\right)\left(x+1\right)+\left(2x-3\right)\left(3x-7\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(x+1+3x-7\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(4x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\4x-6=0\end{matrix}\right.\)\(\Leftrightarrow x=\dfrac{3}{2}\)
b. \(\left(x-4\right)\left(3x-2\right)+x^2-16=0\)
\(\Leftrightarrow\left(x-4\right)\left(3x-2\right)+\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(3x-2+x+4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(4x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\4x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{1}{2}\end{matrix}\right.\)
(2x-3)(x+1)+(2x+3)(3x-7)=0
<=> (2x-3)(x+1)-(2x-3)(3x-7)=0
<=> (2x-3)(x+1-3x+7)=0
<=> (2x-3)(-2x+8)=0
<=> 2x-3=0 => x=3/2
Hoặc -2x+8=0 => x= 4
Vậy x thuộc{3/2;4}
\(A=3\left(2x-3\right)\left(3x+2\right)-\left(2x+4\right)\left(4x-3\right)+9x\left(4-x\right)\)
\(=\left(6x-9\right)\left(3x+2\right)-8x^2+6x-16x+12+36x-9x^2\)
\(=18x^2+12x-27x-18-17x^2+26x+12\)
\(=x^2+11x-6\)
Để A = 0
\(\Leftrightarrow x^2+11x-6=0\)
\(\Leftrightarrow\left(x^2+11x+\frac{121}{4}\right)-\frac{145}{4}=0\)
\(\Leftrightarrow\left(x+\frac{11}{2}\right)^2-\left(\frac{\sqrt{145}}{2}\right)^2=0\)
\(\Leftrightarrow\left(x+\frac{11}{2}-\frac{\sqrt{145}}{2}\right)\left(x+\frac{11}{2}+\frac{\sqrt{145}}{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\sqrt{145}-11}{2}\\x=\frac{-\sqrt{145}-11}{2}\end{matrix}\right.\)
Vậy..................
Bài 2:
a: \(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
\(x^4-2x^3-2x^2+3x+2=0\)
\(\Leftrightarrow x^4-2x^3-2x^2+4x-x+2=0\)
\(\Leftrightarrow\left(x^4-2x^3\right)-\left(2x^2-4x\right)-\left(x-2\right)=0\)
\(\Leftrightarrow x^3\left(x-2\right)-2x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-2x-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-x-x-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[\left(x^3-x\right)-\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left[x\left(x^2-1\right)-\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left[x\left(x-1\right)\left(x+1\right)-\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left[\left(x^2-x\right)\left(x+1\right)-\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x^2-x-1\right)=0\)
Đến đây ez r
a)x+x2-x3-x4=0
<=>x(x+1)-x3(x+1)=0
<=>x(x+1)(1-x2)=0
<=>x(x+1)(x+1)(x-1)=0
<=>x(x+1)2(x-1)=0
<=>x=0
hoặc (x+1)2=0<=>x=-1
hoặc x-1=0<=>x=1
b)sửa đề 1 chút!!!
2x3+3x2+2x+3=0
<=>x2(2x+3)+(2x+3)=0
<=>(2x+3)(x2+1)=0
<=>2x+3=0(do x2+1>0 với mọi x)
<=>2x=-3
<=>x=-1,5
c)x2-x-12=0
<=>(x2-4x)+(3x-12)=0
<=>(x(x-4)+3(x-4)=0
<=>(x-4)(x+3)=0
<=>x-4=0<=>x=4
Hoặc x+3=0<=>x=-3
Ta có: \(VT=\left(x^4+x^3\right)-\left(3x^3+3x^2\right)+\left(x^2+x\right)+2\left(x+1\right)\)
\(=x^3\left(x+1\right)-3x^2\left(x+1\right)+x\left(x+1\right)+2\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3-2x^2-x^2+2x-x+2\right)\)
\(=\left(x+1\right)\left[x^2\left(x-2\right)-x\left(x-2\right)-\left(x-2\right)\right]\)
\(=\left(x+1\right)\left(x-2\right)\left(x^2-x-1\right)\)
Do vậy pt tương đương với \(\left(x+1\right)\left(x-2\right)\left(x^2-x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\) . Giải cái ngoặc cuối cùng: \(x^2-x-1=0\Leftrightarrow\left[{}\begin{matrix}x=\frac{1+\sqrt{5}}{2}\\x=\frac{1-\sqrt{5}}{2}\end{matrix}\right.\)