\(\frac{5x-2}{3}\) ko nhỏ hơn giá trị của biểu thức x

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2017

bài này dùng bất đẳng thức để giải.

giải:

\(\dfrac{5x-2}{3}\ge x\Leftrightarrow\dfrac{5x-2}{3}\ge\dfrac{3x}{3}\\ \Rightarrow5x-2\ge3x\\ \Leftrightarrow5x-3x\ge2\Leftrightarrow2x\ge2\\ x\ge1\)

Vậy tập nghiệm của phương trình là \(\left\{x|x\ge1\right\}\)

25 tháng 3 2017

Ta có: \(\dfrac{5x-2}{3}\)không nhỏ hơn x nên \(\dfrac{5x-2}{3}\)\(\ge\)x

<=>\(\dfrac{5x-2}{3}\ge\dfrac{3x}{3}\)<=>5x-2\(\ge\)3x<=>5x-3x\(\ge\)2<=>2x\(\ge\)2<=>x\(\ge\)1

Vậy x\(\ge\)1 thì \(\dfrac{5x-2}{3}\)không nhỏ hơn x

1 tháng 4 2017

Ta có:

P=x2+y2+z2+xy+yz+zx

\(\Rightarrow\) 2P= 2x2+2y2+2z2+2xy+2yz+2xz

= (x+y+z)2+x2+y2+z2

= 9+x2+y2+z2

Ta có x2+y2+z2\(\geq\) xy+yz+zx

\(\Leftrightarrow\) 3(x2+y2+z2)\(\geq\) x2+y2+z2+2xy+2yz+2zx

\(\Leftrightarrow\) 3(x2+y2+z2)\(\geq\) (x+y+z)2

\(\Leftrightarrow\) x2+y2+z2\(\geq\) \(\dfrac{\left(x+y+z\right)^2}{3}\) (1)

Từ đó suy ra: 9 + x2+y2+z2\(\geq\) 9+\(\dfrac{\left(x+y+z\right)^2}{3}\) = 9+\(\dfrac{9}{3}\)=9+3=12

\(\Rightarrow\) 2P\(\geq\)12

\(\Rightarrow\) P\(\geq\)6

Dấu = xảy ra khi x=y=z=1

Vậy MinP = 6 khi x=y=z=1

1 tháng 4 2017

Coi lại đề nhé!!!

7 tháng 10 2017

https://hoc24.vn/hoi-dap/question/54430.html

7 tháng 10 2017

 

\(A=\left(2n-1\right)^3-2n+1\)

\(A=8n^3-6n+6n-1-2n+1\)

\(A=8n^3-2n=2n\left(4n^2-1\right)\)

\(A=2n\left(2n+1\right)\left(2n-1\right)\)

\(A=\left(2n-1\right)2n\left(2n+1\right)⋮6\) ( 3 số tự nhiên liên tiếp)

a: \(9x^2-6x+3\)

\(=\left(9x^2-6x+1\right)+2\)

\(=\left(3x-1\right)^2+2\ge2\)

b: \(6x-x^2+1\)

\(=-\left(x^2-6x-1\right)\)

\(=-\left(x^2-6x+9-10\right)\)

\(=-\left(x-3\right)^2+10\le10\)

29 tháng 10 2017

\(A=3x^2-12x+10\\ A=3x^2-12x+12-2\\ A=\left(3x^2-12x+12\right)-2\\ A=3\left(x^2-4x+4\right)-2\\ A=3\left(x^2-2\cdot x\cdot2+2^2\right)-2\\ A=3\left(x-2\right)^2-2\\ Do\left(x-2\right)^2\ge0\forall x\\ \Rightarrow3\left(x-2\right)^2\ge0\forall x\\ \Rightarrow A=3\left(x-2\right)^2-2\ge-2\forall x\\ \text{Dấu “=” xảy ra khi : }\\ \left(x-2\right)^2=0\\ \Leftrightarrow x-2=0\\ \Leftrightarrow x=2\\ \text{ Vậy }A_{\left(Min\right)}=-2\text{ khi }x=2\)

29 tháng 10 2017

A=3x2 - 12x + 10

A= (3x2- 2.3x.2+22)-22+10

A= (3x-2)2+6 \(\ge\) +6

Vậy min A = 6 . Dấu = xảy ra khi 3x -2 = 0

3x= 2

x= \(\dfrac{2}{3}\)

10 tháng 6 2017

nhớ bật google dịch là đc bạn ơi....:))))

26 tháng 10 2016

\(x\left(2x^2-3\right)-x^2\left(5x+1\right)+x^2\)

\(=2x^3-3x-5x^3-x^2+x^2\)

\(=-3x^3-3x\)

26 tháng 10 2016

x (2x2-3)-x2(5x+1) + x2

= x[(2x2-3)-x(5x+1)+x]

=x(2x2-3-5x2-x+x)

=x(-3x2-3)

=-3x3-3x

8 tháng 5 2017

Ta có: \(-x^2+2x-3=-x^2+2x-1-2=-\left(x-1\right)^2-2\le-2\) (1)

\(A=\dfrac{-5}{x^2-2x+3}=\dfrac{5}{-x^2+2x+3}\) (2)

Từ (1);(2)\(\Rightarrow A\ge-\dfrac{5}{2}\) Vậy min A=-5/2 khi x=1

27 tháng 7 2017

\(a,\left(x+1\right)^2-\left(x-1\right)^2-3\left(x+1\right)\left(x-1\right)\)

\(=x^2+2x+1-\left(x^2-2x+1\right)-3\left(x^2-1\right)\)

\(=x^2+2x+1-x^2+2x-1-3x^2+2=-3x^2+4x+2\)\(b,5\left(x+2\right)\left(x-2\right)-\left(2x-3\right)^2-x^2+17\)

\(=5\left(x^2-4\right)-\left(4x^2-12x+9\right)-x^2+17\)

\(=5x^2-20-4x^2+12x-9-x^2+17=12x-12\)

16 tháng 9 2017

\(2x^2+3\left(x-1\right)\left(x+1\right)=5x\left(x+1\right)\)

\(\Rightarrow2x^2+3\left(x^2-1\right)=5x^2+5x\)

\(\Rightarrow2x^2+3x^2-3=5x^2+5x\)

\(\Rightarrow5x^2-3=5x^2+5x\)

\(\Rightarrow-3=5x\)

\(\Rightarrow5x=-3\)

\(\Rightarrow x=-\dfrac{3}{5}\)

Vậy ....

P/s : Làm bừa !