Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+, Nếu x,y đều khác 3
=> x và y đều ko chia hết cho 3
=> x^2 và y^2 đều chia 3 dư 1
=> x^2+y^2 chia 3 dư 2
Mà 3xy chia hết cho 3
=> x^2+3xy+y^2 chia 3 dư 2
=> x^2+3xy+y^2 ko phải số chính phương
=> trong 2 số x,y phải có ít nhất 1 số chia hết cho 3
Gia sử x chia hết cho 3
=> x=3
=> A = x^2+3xy+y^2 = 9+9y+y^2 = y^2+9y+9
Đặt A = k^2 ( k thuộc N )
<=> y^2+9y+9 = k^2
<=> 4y^2+36y+36 = (2k)2
<=> (2y+9)^2 - 45 = (2k)^2
<=> (2y+9)-(2k)^2 = 45
<=> (2y-2k+9).(2y+2k+9) = 45
Đến đó bạn tự làm nha nhưng nhớ kết quả gồm những hoán vị mà bạn tìm đc vì lúc đầu đã giả sử x chia hết cho 3
Tk mk nha
Đặt a2=2x+5ya2=2x+5y
-Nếu x=0⇒1+5y=a2⇒5y=(a−1)(a+1)⇒{a+1=5ma−1=5n(m,n∈N,m+n=y,m>n)⇒2=5m−5n=5n(5m−n−1)⇒1+5y=a2⇒5y=(a−1)(a+1)⇒{a+1=5ma−1=5n(m,n∈N,m+n=y,m>n)⇒2=5m−5n=5n(5m−n−1)
Nếu n=0→5m−1=2⇒5m=3→5m−1=2⇒5m=3 (vô lý)
Nếu n≠0≠0 thì vế phải chia hết cho 5, vế trái không chia hết cho 5→→ loại
Tương tự, thử lần lượt x=1;2;3 để tìm nghiệm.
-Nếu x>3
+) Với y lẻ: Đặt y=2k+1 (k∈∈N). Ta có: a2=2x+52k+1≡0+25k.5≡1k.5=5a2=2x+52k+1≡0+25k.5≡1k.5=5(mod 8)⇒⇒a2a2 không là số chính phương→→ loại.
+) Với y chẵn: Đặt y=2k (k∈∈N)⇒2x+52k=a2⇒2x=(a−5k)(a+5k)⇒{a+5k=2ba−5k=2c(b,c∈N,b+c=x,b>c)⇒2.5k=2b−2c=2c(2b−c−1)⇒2b=2⇒b=1⇒2c−1−1=5k⇒2c−1=5k+1≡1k+1=2⇒2x+52k=a2⇒2x=(a−5k)(a+5k)⇒{a+5k=2ba−5k=2c(b,c∈N,b+c=x,b>c)⇒2.5k=2b−2c=2c(2b−c−1)⇒2b=2⇒b=1⇒2c−1−1=5k⇒2c−1=5k+1≡1k+1=2(mod 4)⇒2c−1=2⇒c=2⇒x=2+1=3⇒2c−1=2⇒c=2⇒x=2+1=3(loại, vì x>3)
a) \(\frac{1}{x}+\frac{1}{y}=2\Leftrightarrow\frac{x+y}{xy}=2\)
\(\Leftrightarrow x+y=2xy\Leftrightarrow4xy=2x+2y\)
\(\Leftrightarrow4xy-2x-2y=0\Leftrightarrow2x\left(2y-1\right)-\left(2y-1\right)=1\)
\(\Leftrightarrow\left(2x-1\right)\left(2y-1\right)=1=1.1=\left(-1\right).\left(-1\right)\)
\(TH1:\hept{\begin{cases}2x-1=1\\2y-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)
\(TH1:\hept{\begin{cases}2x-1=-1\\2y-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}\left(L\right)\)
Vậy x = y = 1
b) A là số chính phương nên ta đặt \(n^2+2n+8=a^2\)
\(\Leftrightarrow\left(n+1\right)^2+7=a^2\)
\(\Leftrightarrow a^2-\left(n+1\right)^2=7\)
\(\Leftrightarrow\left(a-n-1\right)\left(a+n+1\right)=7=1.7=7.1\)
\(=\left(-1\right).\left(-7\right)=\left(-7\right).\left(-1\right)\)
Lập bảng:
\(a-n-1\) | \(1\) | \(7\) | \(-1\) | \(-7\) |
\(a+n+1\) | \(7\) | \(1\) | \(-7\) | \(-1\) |
\(a-n\) | \(2\) | \(8\) | \(0\) | \(-6\) |
\(a+n\) | \(6\) | \(0\) | \(-8\) | \(-2\) |
\(a\) | \(4\) | \(4\) | \(-4\) | \(-4\) |
\(n\) | \(2\) | \(-4\) | \(-4\) | \(2\) |
Mà n là số tự nhiên nên n = 2.