K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 2:

a: Sai

b: Sai

c: Sai

d: Đúng

6 tháng 5 2023

`@TH1: m-1=0<=>m=1`

   `=>2x+1 > 0<=>x > -1/2`

 `=>m=1` loại

`@TH2: m-1 ne 0<=>m ne 1`

  `=>(m-1)x^2-2(m-2)x+2-m > 0 AA x in RR`

`=>{(m-1 > 0),(\Delta' < 0):}`

`<=>{(m > 1),((m-2)^2-(2-m)(m-1) < 0):}`

`<=>{(m > 1),(3/2 < m < 2):}`

`=>3/2 < m < 2`

6 tháng 5 2023

2 tháng 3 2021

Áp dụng BĐT Cosi:

\(\dfrac{x^2}{1+16x^4}+\dfrac{y^2}{1+16y^4}\le\dfrac{x^2}{8x^2}+\dfrac{y^2}{8y^2}=\dfrac{1}{4}\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=\pm\dfrac{1}{2}\\y=\pm\dfrac{1}{2}\end{matrix}\right.\)

10 tháng 3 2023

\(f\left(x\right)=\left(m-4\right)x^2+\left(m+1\right)x+2m-1\)

\(f\left(x\right)< 0,\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m-4< 0\\\left(m+1\right)^2-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\m^2+2m+1-4\left(2m^2-m-8m+4\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow m^2+2m+1-8m^2+36m-16< 0\)

\(\Leftrightarrow-7m^2+38m-15< 0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\\left[{}\begin{matrix}m< \dfrac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\)

\(KL:m\in\left(5;+\infty\right)\)

NV
14 tháng 8 2020

a/ Khẳng định sai

Phản ví dụ: \(x=5,3\in\left(2,1;5,4\right)\) nhưng \(x\notin\left(2;5\right)\)

b/ Khẳng định đúng, vì \(\left[-4,3;-3,2\right]\subset\left[-5;-3\right]\)

16 tháng 9 2023

y xđ khi \(x^2-3x+1\ne0\)

       \(\Leftrightarrow\left(x-\dfrac{3}{2}\right)^2-\dfrac{5}{4}\ne0\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ne\dfrac{3+\sqrt{5}}{2}\\x\ne\dfrac{3-\sqrt{5}}{2}\end{matrix}\right.\)

\(Q=\left(\dfrac{3-\sqrt{5}}{2}\right)^3+\left(\dfrac{3+\sqrt{5}}{2}\right)^3+3\left(\dfrac{3-\sqrt{5}}{2}+\dfrac{3+\sqrt{5}}{2}\right)\left(\dfrac{3-\sqrt{5}}{2}.\dfrac{3+\sqrt{5}}{2}\right)-13\left(\dfrac{3-\sqrt{5}}{2}.\dfrac{3+\sqrt{5}}{2}\right)\) \(=\left(\dfrac{3-\sqrt{5}}{2}+\dfrac{3+\sqrt{5}}{2}\right)^3-13\)

\(=3^3-13=27-13=14\)