Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có (x + 1) > (x - 2)
Để (x + 1)(x - 2) < 0
Thì 2 thừa số phải trái dấu
mà (x + 1) > (x - 2)
=> \(\hept{\begin{cases}x-2< 0\\x+1>0\end{cases}}\Rightarrow\hept{\begin{cases}x< 2\\x>-1\end{cases}}\Rightarrow-1< x< 2\)
a) \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
\(\Leftrightarrow\hept{\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}}\Rightarrow\hept{\begin{cases}x>2\\x>-\frac{2}{3}\end{cases}}\Rightarrow x>2\)
Hoặc \(\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}}\Rightarrow\hept{\begin{cases}x< 2\\x< -\frac{2}{3}\end{cases}}\Rightarrow x< \frac{-2}{3}\)
Vậy \(\orbr{\begin{cases}x>2\\x< -\frac{2}{3}\end{cases}}\)
a)\(\left(x+1\right)\left(x-2\right)< 0\)
\(\Rightarrow\) x + 1 và x - 2 khác dấu nhau
mà x + 1 > x - 2 với mọi x
\(\Rightarrow\begin{cases}x+1>0\\x-2< 0\end{cases}\)\(\Rightarrow\begin{cases}x=-1\\x=2\end{cases}\)\(\Rightarrow-1< x< 2\)
\(\Rightarrow x\in\left\{0;1\right\}\)
nhân vào được pt bật 2 rồi giải có gì đâu!!!!!
a) x=2;-1
b) a*b>0
thì xét 2 th a>và b> hặc a<0 và b<0
hết
Ta có : (x + 1)(x - 2) < 0
<=> 2 th xảy ra
TH1 : \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< -1\\x>2\end{cases}}\left(loại\right)}\)
Th2 : \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< -1\\x>2\end{cases}\Leftrightarrow}-1< x< 2}\)
Để (x+2/3)(x-2)>0 =>x+2/3 và x-2 cùng dấu
Ta có 2 trường hợp
TH1: \(\hept{\begin{cases}x+\frac{2}{3}>0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x>\frac{-2}{3}\\x>2\end{cases}\Rightarrow}x>2}\)
TH2: \(\hept{\begin{cases}x+\frac{2}{3}< 0\\x-2< 0\end{cases}\Rightarrow\hept{\begin{cases}x< \frac{-2}{3}\\x< 2\end{cases}\Rightarrow}x< \frac{-2}{3}}\)
Vậy x>2 hoặc x<-2/3 thì (x+2/3)(x-2)>0
a)
TH1 x+1>0 và x-2<0=>x>-1 và x<2
=>-1<x<2
TH2 x+1<0 và x-2>0=>x<-1 và x>2(loại)
b)TH1 x-2>0 và x+2/3>0
=>-2/3<x<2
TH2 x-2<0 và x+2/3<0(loại)
nếu giá trị biểu thức của các giá trị tuyệt đối băng 0 thì các số hạng phải bằng 0
xét : \(x-\frac{1}{2}\)=0
x=0+\(\frac{1}{2}\)=\(\frac{1}{2}\)
xét \(y+\frac{2}{3}\)=0
y=0-\(\frac{2}{3}\)=\(\frac{-2}{3}\)
xét \(x^2\)+xz=0
\(\frac{1}{2}^2\)+\(\frac{1}{2}\).z=0
\(\frac{1}{2}.z=0\)-\(\frac{1}{2}^2\)
\(\frac{1}{2}.z=0-\frac{1}{4}=-\frac{1}{4}\)
z=\(\frac{-1}{4}\):\(\frac{1}{2}\)
z=\(\frac{-1}{2}\)
vậy x=\(\frac{1}{2}\) ;y=\(\frac{-2}{3}\) ;z=\(\frac{-1}{2}\)
a) \(\left(x+1\right)\left(x-2\right)< 0\)
\(\Leftrightarrow\begin{cases}x+1>0\\x-2< 0\end{cases}\) hoặc \(\begin{cases}x+1< 0\\x-2>0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>-1\\x< 2\end{cases}\) hoặc \(\begin{cases}x< -1\\x>2\end{cases}\) (loại)
\(\Leftrightarrow-1< x< 2\)
b) \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
\(\Leftrightarrow\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}\) hoặc \(\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>2\\x>-\frac{2}{3}\end{cases}\) hoặc \(\begin{cases}x< 2\\x< -\frac{2}{3}\end{cases}\)
\(\Leftrightarrow x>2\) hoạc \(x< -\frac{2}{3}\)
a.Từ (x+1). (x+2) <0 suy ra \(\hept{\begin{cases}\left(x+1\right)< 0\\\left(x+2\right)>0\end{cases}}\Rightarrow\hept{\begin{cases}x< -1\\x>-2\end{cases}}\Rightarrow-2< x< -1\)
hoặc \(\hept{\begin{cases}\left(x+1\right)>0\\\left(x+2\right)< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-1\\x< -2\end{cases}}}\left(L\right)\)
Vậy -2<x<-1 là giá trị cần tìm (với x thuộc)
b.tương tự
(x – 2)(x + 2/3) > 0 suy ra: x – 2 và x + 2/3 cùng dấu
-TH1 : Cùng dương
- TH2: Cùng âm
Vậy x > 2 hoặc x < -2/3 thì (x - 2)(x + 2/3) > 0.