Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(3\left|2x+5\right|\ge0\forall x\)
\(\Leftrightarrow3\left|2x+5\right|-7\ge-7\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{5}{2}\)
c: ta có: \(\left(2x-3\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(2x-3\right)^2-14\ge-14\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{3}{2}\)
\(\frac{7^x\left(7^2+7+1\right)}{57}=\frac{5^{2x}\left(1+5+5^3\right)}{131}\)
\(\frac{7^x.57}{57}=\frac{5^{2x}.131}{131}\)
\(7^x=5^{2x}\)khi và chỉ khi x = 0.
\(\frac{7^{x+2}+7^{x+1}+7^x}{57}=\frac{7^x.7^2+7^x.7+7^x}{57}=\frac{7^x.\left(7^2+7+1\right)}{57}=7^x\)
\(\frac{5^{2x}+5^{2x+1}+5^{2x+3}}{131}=\frac{5^{2x}+5^{2x}.5+5^{2x}.5^3}{131}=\frac{5^{2x}\left(1+5+5^3\right)}{131}=\frac{25^x.131}{131}=25^x\)
\(\Rightarrow7^x=25^x\Rightarrow x=0\)
Biến đổi vế trái, ta được : \(\frac{7^{x+2}+7^{x+1}+7^x}{57}=\frac{7^x.7^2+7^x.7+7^x}{57}=\frac{7^x\left(7^2+7+1\right)}{57}=\frac{7^x.57}{57}=7^x\)\(=7^x\)
Biến đổi vế phải, ta được : \(\frac{5^{2x}+5^{2x+1}+5^{2x+3}}{131}=\frac{5^{2x}+5^{2x}.5+5^{2x}.5^3}{131}=\frac{5^{2x}.\left(1+5+5^3\right)}{131}=\frac{5^{2x}.131}{131}=5^{2x}=25^x\)
\(\Rightarrow7^x=25^x\)
Vì \(\left(7,25\right)=1\)
\(\Rightarrow7^x=25^x=1\)
\(\Rightarrow x=0\)
Vậy \(x=0\)
Bài 1:
a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)
\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)
\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)
\(\Leftrightarrow-12x^2+14x+13=0\)
\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)
b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)
\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)
hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)
|2x - 3| + 5 = x - 7
=> |2x - 3| = x - 7 - 5
=> |2x - 3| = x - 12 (1)
Vì |2x−3|≥0|2x−3|≥0 với mọi x nên x−12≥0⇒x≥12x−12≥0⇒x≥12
+ Với x≥12x≥12 thì (1) sẽ trở thành 2x - 3 = x - 12
=> 2x - x = -12 + 3
=> x = -9, không thỏa mãn điều kiện x≥12x≥12
Vậy không tồn tại giá trị của x thỏa mãn đề bài
ta xét 2 trường hợp :
\(TH1:2x-3\ge0\Leftrightarrow x\ge\frac{3}{2}\)
\(\Rightarrow2x-3+5=x-7\)
\(\Leftrightarrow2x+2=x-7\)
\(\Leftrightarrow2x-x=-7-2\)
\(\Leftrightarrow x=-9\)( loại )
\(TH2:2x-3< 0\Leftrightarrow x< \frac{3}{2}\)
\(\Rightarrow-\left(2x-3\right)+5=x-7\)
\(\Leftrightarrow-2x-x=-7-3-5\)
\(\Leftrightarrow-3x=-15\)
\(\Leftrightarrow x=5\)( loại )
=> phương trình vô nghiệm