Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2x-4,36}{0,125}=0,25.42,9-11,7.0,25+0,25.0,8\)
\(\Leftrightarrow\frac{2x-4,36}{0,125}=0,25.\left(42,9-11.7+0,8\right)\)
\(\Leftrightarrow\frac{2x-4,36}{0,125}=0,25.32\)
\(\Leftrightarrow\frac{2x-4,36}{0,125}=8\)
\(\Leftrightarrow2x-4,36=1\)
\(\Leftrightarrow2x=5,36\)
\(\Leftrightarrow x=2,68\)
b) \(N=\frac{1}{1.5}+\frac{1}{5.10}+\frac{1}{10.15}+\frac{1}{15.20}+...+\frac{1}{2005.2010}\)
\(\Leftrightarrow N=\frac{1}{5}\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+\frac{1}{15}-\frac{1}{20}+...+\frac{1}{2005}-\frac{1}{2010}\right)\)
\(\Leftrightarrow N=\frac{1}{5}\left(1-\frac{1}{2010}\right)\)
\(\Leftrightarrow N=\frac{1}{5}.\frac{2009}{2010}=\frac{2009}{10050}\)
Bài 1:
a)\(\frac{2\cdot x-4,36}{0,125}=0,25\cdot42,9-11,7\cdot0,25+0,25\cdot0,8\)
\(\frac{2\cdot x-4,36}{0,125}=0,25\cdot\left(42,9-11,7+0,8\right)\)
\(\frac{2\cdot x-4,36}{0,125}=0,25\cdot32\)
\(\frac{2\cdot x-4,36}{0,125}=8\)
\(2\cdot x-4,36=8\cdot0,125\)
\(2\cdot x-4,36=1\)
\(2\cdot x=1+4,36\)
\(2\cdot x=5,36\)
\(x=\frac{5,36}{2}=2,68\)
b) \(N=\frac{1}{1\cdot5}+\frac{1}{5\cdot10}+\frac{1}{10\cdot15}+\frac{1}{15\cdot20}+...+\frac{1}{2005\cdot2010}\)
\(4N=\frac{4}{1\cdot5}+\frac{4}{5\cdot10}+\frac{4}{10\cdot15}+\frac{4}{15\cdot20}+...+\frac{4}{2005\cdot2010}\)
\(4N=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+\frac{1}{15}-\frac{1}{20}+...+\frac{1}{2005}-\frac{1}{2010}\)
\(4N=1-\frac{1}{2010}=\frac{2009}{2010}\)
\(N=\frac{2009}{2010}\div4=\frac{2009}{8040}\)
Bài 2:
a) ( x + 5,2 ) : 3,2 = 4,7 ( dư 0,5 )
\(x+5,2=4,7\cdot3,2+0,5\)
\(x+5,2=15,54\)
\(x=15,54-5,2=10,34\)
b)\(A=\frac{4047991-2010\cdot2009}{4050000-2011\cdot2009}\)
\(A=\frac{4047991-2010\cdot2009}{4050000-2009-2010\cdot2009}\)
\(A=\frac{4047991-2010\cdot2009}{4047991-2010\cdot2009}=1\)
Bài 3:
a) \(104,5\cdot x-14,1\cdot x+9,6\cdot x=25\)
\(x\cdot\left(104,5-14,1+9,6\right)=25\)
\(x\cdot100=25\)
\(x=\frac{25}{100}=\frac{1}{4}=0,25\)
b) \(T=\frac{2009\cdot2010+2000}{2011\cdot2010-2020}\)
\(T=\frac{2009\cdot2010+2000}{2009\cdot2010+4020-2020}\)
\(T=\frac{2009\cdot2010+2000}{2009\cdot2010+2000}=1\)
#)Giải :
a) \(\frac{2xX-4,36}{0,125}=\)0,25 x 42,9 - 11,7 x 0,25 + 0,25 x 0,8
\(\frac{2xX-4,36}{0,125}=\)0,25 x ( 42,9 - 11,7 + 0,8 )
\(\frac{2xX-4,36}{0,125}=\)0,25 x 32
\(\frac{2xX-4,36}{0,125}=8\)
\(2xX-4,36=8x0,125\)
\(2xX-4,36=1\)
\(2xX=1+4,36\)
\(2xX=5,36\)
\(X=5,36:2\)
\(X=2,68\)
#~Will~be~Pens~#
Tìm x biết:
a) (15 × 19 – x – 0,15):0,25 = 15 : 0,25
b)\(2\frac{2}{3}-x=\frac{1}{3}\cdot\frac{6}{2}\)
a) (15 x 19 - x - 0,15) : 0,25 = 15 : 0,15
(285 - x - 0,15) : 0,25 = 60
(285 - x - 0,25) = 60 : 0,25
( 285 - x - 0,25) = 15
285 - x = 15 + 0,25
285 - x = 15,25
x = 285 - 15,25
x = 269,75
a)\(\frac{13}{15}+\frac{13}{35}+\frac{13}{63}+\frac{13}{99}\)
\(=\frac{13}{3.5}+\frac{13}{5.7}+\frac{13}{7.9}+\frac{13}{9.11}\)
\(=\frac{13}{2}\left(\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{9}-\frac{1}{11}\right)\)
\(=\frac{13}{2}\left(\frac{1}{3}-\frac{1}{11}\right)\)
\(=\frac{13}{2}\cdot\frac{8}{33}\)
\(=\frac{52}{33}\)
a) Đặt A= 13/15 + 13/35 + 13/63 + 13/99
A = 13/2 ( 2/15 + 2/35 + 2/63 + 2/99)
A= 13/2 ( 2/ 3.5 + 2/5.7 + 2/7.9 + 2/9.11)
A= 13/2 ( 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11)
A= 13/2 ( 1/3 - 1/11)
A= 13/2 . 8/33
A= 52/33
\(2x-\frac{4.36}{0.125}=0.15\times42.9-11.7\times0,25\times0.8\)
\(2x-\frac{872}{25}=\frac{819}{200}\)
\(2x=\frac{819}{200}+\frac{872}{25}=\frac{1559}{40}\)
\(x=\frac{1559}{40}\times\frac{1}{2}=\frac{1559}{80}\)
a) \(x\cdot\frac{1}{2}+x\cdot\frac{1}{4}+x\cdot\frac{1}{8}=\frac{21}{24}\)
\(x\cdot\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}\right)=\frac{7}{8}\)
\(x\cdot\frac{7}{8}=\frac{7}{8}\)
\(\Rightarrow x=\frac{7}{8}\div\frac{7}{8}=1\)
b) \(\left(x+4\right)+\left(x+9\right)+\left(x+14\right)+.....+\left(x+44\right)+\left(x+49\right)=1430\)
\(\left(x+x+x+....+x+x\right)+\left(4+9+14+...+44+49\right)=1430\)
\(10x+265=1430\)
\(10x=1430-265\)
\(10x=1165\)
\(\Rightarrow x=\frac{1165}{10}=116,5\)
c) \(x\cdot0,25-0,5=1\)
\(x\cdot0,25=1+0,5\)
\(x\cdot0,25=1,5\)
\(\Rightarrow x=1,5\div0,25=6\)
\(N=\frac{1}{1.5}+\frac{1}{5.10}+\frac{1}{10.15}+\frac{1}{15.20}+...+\frac{1}{2005.2010}\)
\(N=\frac{1}{5}.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+\frac{1}{15}-\frac{1}{20}+...+\frac{1}{2005}-\frac{1}{2010}\right)\)
\(N=\frac{1}{5}.\left(1-\frac{1}{2010}\right)\)
\(N=\frac{1}{5}.\frac{2009}{2010}\)
\(N=\frac{2009}{10050}\)