Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài, ta có:
\(\frac{2}{3}x^2-2=\frac{2}{3}\)
\(\frac{2}{3}x^2=\frac{2}{3}+2\)
\(\frac{2}{3}x^2=\frac{8}{3}\)
\(x^2=\frac{8}{3}\div\frac{2}{3}\)
\(x^2=4\)
\(x=\text{±}2\)
a. Để x là số nguyên
Thì -3 chia hết cho 2a +1
==> -3 chia hết cho 2a —3 +4
Vì -3 chia hết cho -3
Nên -3 chia hết cho 2a+4
2a+4 € Ư(3)
2a+4€{1;-1;2;-3}
Th1: 2a+4=1
2a=1–4
2a=-3
a=-3:2
a=-3/2
Th2: 2a+4=-1
2a=-1-4
2a=-5
a=-5:2
a=-5/2
Th3: 2a+4=3
2a=3-4
2a=-1
a=-1:2
a=-1/2
TH4: 2a+4=-3
2a=-3-4
2a=-7
a=-7:2
a=-7/2
Mình biết 1 câu thôi
\(a,\left(y^{54}\right)^2=y\)\(\Rightarrow y^{108}=y\)\(\Rightarrow y=\pm1\)
\(b,\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)
\(\Rightarrow\left(x-1\right)^{x+4}-\left(x-1\right)^{x+2}=0\)
\(\Rightarrow\left(x-1\right)^{x+2}\left[\left(x-1\right)^2-1\right]=0\)
\(\Rightarrow x\left(x-1\right)^{x+2}\left(x-2\right)=0\)
\(\Rightarrow x\in\left\{0;1;2\right\}\)
\(c,x\left(6-x\right)^{2019}=\left(6-x\right)^{2019}\)
\(\Rightarrow\left(6-x\right)^{2019}\left(x-1\right)=0\)
\(\Rightarrow x\in\left\{1;6\right\}\)
\(\left(y^{54}\right)^2=y\)
\(\Rightarrow y^{108}=y\)
\(\Rightarrow y^{108}-y=0\)
\(\Rightarrow y\cdot\left(y^{107}-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}y=0\\y^{107}-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}y=0\\y^{107}=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}\)
Lời giải:
a. Để A là số nguyên tố thì 1 trong 2 thừa số $x-2, x+4$ có giá trị bằng 1 và số còn lại là số nguyên tố.
Mà $x-2< x+4$ nên $x-2=1$
$\Rightarrow x=3$
Thay vào $A$ thì $A=7$ là snt (thỏa mãn)
b. Để $A<0\Leftrightarrow (x-2)(x+4)<0$
Điều này xảy ra khi $x-2,x+4$ trái dấu. Mà $x-2< x+4$ nên:
$x-2<0< x+4$
$\Rightarrow -4< x< 2$
$x$ nguyên nên $x=-3,-2,-1,0,1$
\(x^2+4x+2019\) là số chính phương nên có dạng \(t^2\)
\(\Rightarrow x^2+4x+2019=t^2\)
\(\Rightarrow x^2+4x+4+2015-t^2=0\)
\(\Rightarrow\left(x+2+t\right)\left(x+2-t\right)=-2015\)
Xét ước :V