Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐK:\)\(x\ge0;x\ne1;x\ne4\)
\(P=B:A=\frac{\sqrt{x}-2}{\sqrt{x}-1}:\frac{\sqrt{x}+3}{\sqrt{x}-1}\)
\(=\frac{\sqrt{x}-2}{\sqrt{x}+3}\)
\(P=\frac{1}{3}\)\(\Rightarrow\)\(\frac{\sqrt{x}-2}{\sqrt{x}+3}=\frac{1}{3}\)
\(\Rightarrow\)\(3\left(\sqrt{x}-2\right)=\sqrt{x}+3\)
\(\Leftrightarrow\)\(2\sqrt{x}-9=0\)
\(\Leftrightarrow\)\(2\sqrt{x}=9\)
\(\Leftrightarrow\)\(\sqrt{x}=\frac{9}{2}\)
\(\Leftrightarrow\)\(x=\frac{81}{4}\)
\(P=\left(\sqrt{x}+\frac{x+2}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{\sqrt{x}-4}{1-x}\right)\)
\(=\left[\frac{\sqrt{x}.\left(\sqrt{x}+1\right)}{\sqrt{x}+1}+\frac{x+2}{\sqrt{x}+1}\right]:\left(\frac{\sqrt{x}}{\sqrt{x}+1}+\frac{\sqrt{x}-4}{x-1}\right)\)
\(=\left(\frac{x+\sqrt{x}}{\sqrt{x}+1}+\frac{x+2}{\sqrt{x}+1}\right):\left[\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]\)
\(=\frac{2x+\sqrt{x}+2}{\sqrt{x}+1}:\left[\frac{x-\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}-4}{\left(\sqrt{x}-\right)\left(\sqrt{x}+1\right)}\right]\)
\(=\frac{2x+\sqrt{x}+2}{\sqrt{x}+1}:\frac{x-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{2x+\sqrt{x}+2}{\sqrt{x}+1}.\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{x-4}\)
\(=\frac{\left(2x+\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{x-4}\)
\( a)A = \dfrac{{a - \sqrt a - 6}}{{4 - a}} - \dfrac{1}{{\sqrt a - 2}}\\ A = \dfrac{{a + 2\sqrt a - 3\sqrt a - 6}}{{\left( {2 - \sqrt a } \right)\left( {2 + \sqrt a } \right)}} - \dfrac{1}{{\sqrt a - 2}}\\ A = \dfrac{{\left( {\sqrt a + 2} \right)\left( {\sqrt a - 3} \right)}}{{\left( {2 - \sqrt a } \right)\left( {2 + \sqrt a } \right)}} - \dfrac{1}{{\sqrt a - 2}}\\ A = - \dfrac{{\sqrt a - 3}}{{\sqrt a - 2}} - \dfrac{1}{{\sqrt a - 2}}\\ A = - \dfrac{{\sqrt a - 2}}{{\sqrt a - 2}} = - 1 \)
\( b)B = \dfrac{1}{{\sqrt x - 1}} + \dfrac{1}{{\sqrt x + 1}} - \dfrac{2}{{x - 1}}\\ B = \dfrac{1}{{\sqrt x - 1}} + \dfrac{1}{{\sqrt x + 1}} - \dfrac{2}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\ B = \dfrac{{\sqrt x + 1 + \sqrt x - 1 - 2}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\ B = \dfrac{{2\sqrt x - 2}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\ B = \dfrac{{2\left( {\sqrt x - 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}} = \dfrac{2}{{\sqrt x + 1}} \)
1.\(x=7+4\sqrt{3}\)
\(=\left(\sqrt{3}+2\right)^2\)
Thay x=\(\left(2+\sqrt{3}\right)^2\), ta có:
\(A=\frac{3+\sqrt{3}}{4+\sqrt{3}}\)
2. \(B=\frac{\sqrt{x}\left(\sqrt{x}-2\right)-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-\sqrt{x}-4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(B=\frac{-3}{2-\sqrt{x}}\left(đpcm\right)\)
3. \(\frac{B}{A}=\frac{\frac{-3}{2-\sqrt{x}}}{\frac{\sqrt{x}+1}{\sqrt{x}+2}}=\frac{-3}{2-\sqrt{x}}.\frac{\sqrt{x}+2}{\sqrt{x}+1}\)
\(\frac{B}{A}< -1\Rightarrow\frac{3\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}< -1\)
\(\Leftrightarrow\frac{3\sqrt{x}+6+x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}< 0\)
\(\Leftrightarrow\frac{x-2\sqrt{x}+4}{x-\sqrt{x}-2}< 0\)
\(\Rightarrow x-\sqrt{x}-2< 0\)(Vì \(x-2\sqrt{x}+4>0\))
\(\Leftrightarrow-1< x< 2\)