Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\sqrt{x}=a\) , a \(\ge0\)
a , Khi đó biểu thức trở thành :
Q = \(\frac{2a-9}{a^2-5a+6}-\frac{a+3}{a-2}-\frac{2a+1}{3-a}\)
Đến đây làm như lớp 8 thôi
Trả lời:
\(M=\frac{\sqrt{x}+1}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
Để \(M\inℤ\Leftrightarrow1+\frac{4}{\sqrt{x}-3}\inℤ\)
\(\Rightarrow\frac{4}{\sqrt{x}-3}\inℤ\)
\(\Rightarrow\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
\(\sqrt{x}-3\) | \(-4\) | \(-2\) | \(-1\) | \(1\) | \(2\) | \(4\) |
\(\sqrt{x}\) | \(-1\left(L\right)\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) |
\(x\) | \(/\) | \(1\left(TM\right)\) | \(4\left(TM\right)\) | \(16\left(TM\right)\) | \(25\left(TM\right)\) | \(49\left(TM\right)\) |
Vậy \(x\in\left\{1,4,16,25,49\right\}\) thì \(M\inℤ\)
Đk: x \(\ge\)0; x \(\ne\)9
M = \(\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
Để M nguyên <=> \(\frac{4}{\sqrt{x}-3}\in Z\)
<=> \(4⋮\sqrt{x}-3\)<=> \(\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Do \(\sqrt{x}-3\ge-3\) => \(\sqrt{x}-3\in\left\{\pm1;\pm2;4\right\}\)
Lập bảng:
\(\sqrt{x}-3\) | 1 | -1 | 2 | -2 | 4 |
x | 16 | 4 | 25 | 1 | 49 |
Vậy ....
bạn đặt \(\sqrt{x}=a\) , a> 0
Thay \(\sqrt{x}=a\) vô biểu thức => rút gọn ra => thay trở lại
Ta có
\(1D=\frac{\sqrt{x}-2}{\sqrt{x}-3}=1+\frac{1}{\sqrt{x}-3}\)
Để cho D nguyên thì \(\sqrt{x}-3\)phải là ước của 1
\(\Rightarrow\sqrt{x}-3=\left(-1;1\right)\)
=> x = (4; 16)
=> D = (0; 2)
1/ Để N nhận giá trị nguyên thì trước hết \(\sqrt{x}-2\)phải là ước của 3
\(\sqrt{x}-2=\left(-3;-1;1;3\right)\)
Thế vào ta tìm được x = (1; 9; 25)
=> N = (- 3; 3;1)
\(\cdot M=\frac{2\sqrt{x}+1}{\sqrt{x}-3}=\frac{2\left(\sqrt{x}-3\right)+7}{\sqrt{x}-3}=2+\frac{7}{\sqrt{x}-3}\)
\(\cdot M\inℤ\Leftrightarrow\frac{7}{\sqrt{x}-3}\in Z\Leftrightarrow7⋮\left(\sqrt{x}-3\right)\Leftrightarrow\sqrt{x}-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Lập bảng:
Vậy \(x\in\left\{4;16;100\right\}\)