Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{x+1-5}{x+1}=1-\frac{5}{x+1}\)
Để B nguyên => 5 chia hết x+1
=> x+1 thuộc ước của 5
=> ....... =)
Ta có \(\frac{x-4}{x+1}=\frac{x+1-5}{x+1}=1+\frac{5}{x+1}\)
Để B có giá trị là số nguyên thì \(5⋮x+1=>\left(x+1\right)\inƯ\left(5\right)=\left\{1;5;-1;-5\right\}\)
\(=>x\in\left\{0;4;-2;-6\right\}\)
Vậy \(x\in\left\{0;4;-2;-6\right\}\)
\(=>x\in\left\{0;4;-2;-6\right\}\)\(=>x\in\left\{0;4;-2;-6\right\}\)
Để D nguyên thì x + 5 chia hết cho x - 4
=> x - 4 + 9 chia hết cho x - 4
Do x - 4 chia hết cho x - 4 => 9 chia hết cho x - 4
=> \(x-4\in\left\{1;-1;3;-3;9;-9\right\}\)
=> \(x\in\left\{5;3;7;1;13;-5\right\}\)
Ta có: \(D=\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=1+\frac{9}{x-4}\)
Đặt \(A=\frac{9}{x-4}\)
Để D nguyên thì A phải nguyên
=> \(x-4\inƯ\left(9\right)\)
Do đo ta có bảng:
x-4 | 1 | 9 | 3 | -1 | -3 | -9 |
x | 5 | 13 | 7 | 3 | 1 | -5 |
Vậy \(x\in-5;1;3;5;7;13\)
\(\frac{x^3+4}{x-1}=\frac{x^3-x^2+x^2-x+x-1+5}{x-1}=\frac{x^2\left(x-1\right)+x\left(x-1\right)+\left(x-1\right)+5}{x-1}\)
\(=\frac{\left(x-1\right)\left(x^2+x+1\right)+5}{x-1}=x^2+x+1+\frac{5}{x-1}\)
phân số nguyên khi \(\frac{5}{x-1}\)nguyên <=>\(x-1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\Leftrightarrow x\in\left\{-4;0;2;6\right\}\)
Vì bạn chưa học lớp 8 nên mình không ghi, ta có hằng đẳng thức: x3-1=(x-1)(x2+x+1)
\(\frac{x^2-3x+2}{x+2}=\frac{x^2+2x-5x-10+12}{x+2}=\frac{x\left(x+2\right)-5\left(x+2\right)+12}{x+2}\)
\(=\frac{\left(x-5\right)\left(x+2\right)+12}{x+2}=x-5+\frac{12}{x+2}\)
biểu thức nguyên khi \(\frac{12}{x+2}\) nguyên
<=> x+2 \(\inƯ\left(12\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)
<=>\(x\in\left\{-14;-8;-6;-5;-4;-3;-1;0;1;2;4;10\right\}\)
\(P=\frac{2x+3}{x-1}=\frac{2x-2+5}{x-1}=2+\frac{5}{x-1}\)
P nguyên => \(\frac{5}{x-1}\)nguyên => \(x-1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Thay x - 1 lần lượt bằng các giá trị trên rồi tính ra x.
\(A=\frac{\sqrt{x}-5}{\sqrt{x}+3}\)
a) \(A=\frac{\sqrt{\frac{1}{4}}-5}{\sqrt{\frac{1}{4}}+3}\)
\(A=\frac{\frac{1}{2}-5}{\frac{1}{2}+3}\)
\(A=\frac{\frac{-9}{2}}{\frac{7}{2}}\)
\(A=\frac{-9}{2}.\frac{2}{7}\)
\(A=\frac{-9}{7}\)
b) \(A=-1\Leftrightarrow\frac{\sqrt{x}-5}{\sqrt{x}+3}=-1\)
\(\Leftrightarrow-\sqrt{x}-3=\sqrt{x}-5\)
\(\Leftrightarrow-\sqrt{x}-\sqrt{x}=-5+3\)
\(\Leftrightarrow-2\sqrt{x}=-2\)
\(\Leftrightarrow\sqrt{x}=1\)
\(\Leftrightarrow x=1\)
vậy \(x=1\)
c) \(A=\frac{\sqrt{x}+3-8}{\sqrt{x}+3}\)
\(A=1-\frac{8}{\sqrt{x}+3}\)
\(\Leftrightarrow\sqrt{x}+3\inƯ\left(8\right)\)
\(\Leftrightarrow\sqrt{x}+3\in\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
lập bảng tự làm
\(A=\frac{\sqrt{\frac{1}{4}}-5}{\sqrt{\frac{1}{4}}+3}\)
\(A=\frac{\frac{1}{2}-5}{\frac{1}{2}+3}\)
\(A=\frac{-\frac{9}{2}}{\frac{7}{2}}=-\frac{9}{2}\cdot\frac{2}{7}=-\frac{9}{7}\)
Để \(\frac{131}{x-4}\)có giá trị nguyên thì 131\(⋮\)x-4 => x-4 \(\in\)Ư(131) ={1,-1,131,-131}
Sau đó bn tìm x-4 rồi tìm x là được