Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:Vì \(\left(x+1\right)^{2008}\ge0\) nên \(-\left(x+1\right)^{2008}\le0\)
\(\Rightarrow P=2010-\left(x+1\right)^{2008}\le2010-0=2010\)
Nên P lớn nhất khi \(P=2010\Rightarrow\left(x+1\right)^{2008}=0\Rightarrow x+1=0\Rightarrow x=-1\)
Bài 2:Vì 5>0 nên C nhỏ nhất khi \(\left|x\right|-2< 0\) và \(\left|x\right|-2\) lớn nhất
Nên \(\left|x\right|-2=-1\Rightarrow\left|x\right|=1\Rightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)
\(P=2010-\left(x+1\right)^{2008}\)
\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\)
\(\left[\left(x+1\right)^{1004}\right]^2\ge0\)
\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\le2010\)
Để \(P_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2=0\)
\(\Rightarrow P=2010-0=2010\)
(Dấu"=" xảy ra <=> \(x=-1\)
Bài 2:
Để \(C_{Min}\Rightarrow|x|-2_{Min}\Rightarrow|x|_{Min}\Rightarrow|x|=1\Rightarrow|x|-2=-1\)
\(\Rightarrow C=-5\)
Vì để C Min => /x/ -2 là số nguyễn âm lơn nhất có thể
a) \(|x|\ge0\forall x\Rightarrow|x|+5\ge5\forall x\)
Do đó GTNN của biểu thức là 5 khi x=0
b) \(|x+4|\ge0\forall x\Rightarrow A\ge-2007\forall x\)
Do đó GTNN của A là -2007 khi x + 4 = 0 hay x = - 4
\(\frac{\left|x\right|+2015}{2016}\) . Có: \(\left|x\right|\ge0\Rightarrow\left|x\right|+2015\ge2015\Rightarrow\frac{\left|x\right|+2015}{2016}\ge\frac{2015}{2016}\)
Dấu = xảy ra khi \(x+2015=0\Rightarrow x=0\)
Vậy \(Min\frac{\left|x\right|+2015}{2016}=\frac{2015}{2016}\) tại \(x=0\)
\(\frac{\left|x\right|+1996}{-1997}\) có \(\left|x\right|\ge0\Rightarrow\left|x\right|+1996\ge1996\Rightarrow\frac{\left|x\right|+1996}{-1997}\le-\frac{1996}{1997}\)
Dấu = xảy ra khi \(\left|x\right|+1996=1996\Rightarrow x=0\)
Vậy \(Max\frac{\left|x\right|+1996}{-1997}=\frac{1996}{-1997}\) tại \(x=0\)
a) Vì \(\left(x-3\right)^2\ge0\)
\(\Rightarrow\left(x-3\right)^2+2018\ge2018\)
Dấu "=" xảy ra khi \(x-3=0\)
\(\Rightarrow x=3\)
Vậy với nghiệm nguyên \(x=3\)thì phương trình đạt GTNN là A=2018
b)Vì \(\left|x-5\right|\ge0\)
\(\Rightarrow\left|x-5\right|+2016\ge2016\)
Dấu "=" xảy ra khi \(x-5=0\)
\(\Rightarrow x=5\)
Vậy với nghiệm nguyên \(x=5\)thì phương trình đạt GTNN là B=2016
c) \(\text{C}=\frac{7}{x-3}\)nhỏ nhất khi \(x-3\)âm và đạt giá trị lớn nhất
\(\Rightarrow x-3< 0\)
Mà \(x\in Z\)
\(\Rightarrow x-3\le-1\)
Dấu "=" xảy ra khi \(x=-1+3=2\)
Vậy với nghiệm nguyên \(x=2\)thì phương trình đạt GTNN là \(\text{C}=\frac{7}{2-3}=-7\)
d)\(\text{D}=\frac{x+8}{x-5}=\frac{x-5+13}{x-5}=\frac{x-5}{x-5}+\frac{13}{x-5}=1+\frac{13}{x-5}\)
D nhỏ nhất khi \(1+\frac{13}{x-5}\)nhỏ nhất
\(1+\frac{13}{x-5}\)nhỏ nhất khi \(\frac{13}{x-5}\)nhỏ nhất
\(\frac{13}{x-5}\)nhỏ nhất khi \(x-5\)âm và đạt GTLN
\(\Rightarrow x-5< 0\)
Mà \(x\in Z\)
\(\Rightarrow x-5\le-1\)
Dấu "=" xảy ra khi \(x=-1+5=4\)
Vậy với \(x=4\)thì biểu thức đạt GTNN là \(\text{D}=1+\frac{4+8}{4-5}=1+\frac{12}{-1}=1-12=-11\)
~Học tốt^^~
Phần kết luận: Vậy với x=...... thì "biểu thức"...
em sửa lại từ phương trình -> biểu thức nha :v a ghi vội nên không để ý
a) Với mọi x nguyên ta luôn có: \(\left(x-1\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\) \(\left(x-1\right)^2=0\) \(\Leftrightarrow\) \(x-1=0\) \(\Leftrightarrow\) x = 1.
Do đó \(A=\left(x-1\right)^2+2008\ge0+2008=2008\)
Vậy GTNN của A là 2008 tại x = 1.
b) Với mọi x nguyên ta luôn có \(\left|x+4\right|\ge0\)
.Dấu "=" xảy ra \(\Leftrightarrow\) \(\left|x+4\right|=0\) \(\Leftrightarrow\) \(x+4=0\) \(\Leftrightarrow\) x = -4.
Do đó \(B=\left|x+4\right|+1996\ge0+1996=1996\)
Vậy GTNN của B là 1996 tại x = -4.
Ta có :
| x + 4 | > = 0 vs mọi x ∈ |R
=) | x + 4 | + 1996 > = 1996 vs mọi x ∈ |R
Dấu " = " xảy ra (=) x + 4 = 0
=) x = -4
Vậy GTNN của | x + 4 | + 1996 = 1996 (=) x = -4
Ta có :
| x + 4 | > = 0 vs mọi x ∈ |R
=) | x + 4 | + 1996 > = 1996 vs mọi x ∈ |R
Dấu " = " xảy ra (=) x + 4 = 0
=) x = -4
Vậy GTNN của | x + 4 | + 1996 = 1996 <=> x = -4