![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1
Ta có:\(\left(x^2-x+a\right)\left(x+1\right)=x^3+x^2-x^2-x+ax+a=x^3-x\left(a-1\right)+a\)
Khi đó:
\(x^3+x\left(1-a\right)+a=bx^2+cx+2\)
Do đó \(1-a=c;a=2;b=0\Rightarrow a=2;b=0;c=-1\)
Bài 2:
\(A=\left(n^2+2n-5\right)\left(n+2\right)-2n^3+n+10\)
\(=n^3+2n^2+2n^2+4n-5n-10-2n^3+n+10\)
\(=-n^3+4n^2\)
\(=n^2\left(4-n\right)\)
Lập luận với n chẵn thì cái trên luôn chia hết cho 8
1. ( x2 - x + a )( x + 1 ) = x3 + bx2 + cx + 2
<=> x3 + x2 - x2 - x + ax + a = x3 + bx2 + cx + 2
<=> x3 + 0x2 + ( a - 1 )x + a = x3 + bx2 + cx + 2
<=> \(\hept{\begin{cases}b=0\\a-1=c\\a=2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2\\b=0\\c=1\end{cases}}\)
2. n chẵn => n có dạng 2k ( \(k\inℕ^∗\))
Thế vào ta được :
A = [ ( 2k )2 + 2.2k - 5 )( 2k + 2 ) - 2(2k)3 + 2k + 10
A = ( 4k2 + 4k - 5 )( 2k + 2 ) - 16k3 + 2k + 10
A = 8k3 + 16k2 - 2k - 10 - 16k3 + 2k + 10
A = -8k3 + 16k2 = -8k2(k-2) \(⋮\)8
=> A chia hết cho 8 với mọi n chẵn ( đpcm )
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1.
Tìm a,b để \(x^3+ax+b\)chia \(x+1\)dư 7 và chia cho \(x-3\)dư -5.
- Thương của phép chia đa thức bậc 3 \(x^3+ax+b\)cho \(x+1\)là 1 đa thức bậc 2 có hệ số bậc 2 bằng 1, tổng quát ở dạng: \(x^2+mx+n\).
- Số dư của phép chia này là 7 nên ta có:
\(x^3+ax+b=\left(x+1\right)\left(x^2+mx+n\right)+7\mid\forall x\in R\)
\(\Leftrightarrow x^3+ax+b=x^3+\left(m+1\right)x^2+\left(m+n\right)x+n+7\mid\forall x\in R\)
Để 2 đa thức này bằng nhau với mọi x thuộc R thì hệ số các bậc phải bằng nhau. Đồng nhất chúng ta có:
\(\hept{\begin{cases}m+1=0\\m+n=a\\n+7=b\end{cases}\Rightarrow\hept{\begin{cases}m=-1\\n=a+1\\b=a+1+7\end{cases}\Rightarrow}b=a+8\mid\left(1\right)}\)
- Tương tự với phép chia \(x^3+ax+b\)cho \(x-3\)dư -5.
\(x^3+ax+b=\left(x-3\right)\left(x^2+px+q\right)-5\mid\forall x\in R\)
\(\Leftrightarrow x^3+ax+b=x^3+\left(p-3\right)x^2+\left(q-3p\right)x-\left(3q+5\right)\mid\forall x\in R\)
\(\Rightarrow\hept{\begin{cases}p-3=0\\q-3p=a\\-\left(3q+5\right)=b\end{cases}\Rightarrow\hept{\begin{cases}p=3\\q=a+9\\b=-\left(3\left(a+9\right)+5\right)\end{cases}\Rightarrow}b=-3a-32\mid\left(2\right)}\)
- Từ (1) và (2) ta có:
\(\hept{\begin{cases}b=a+8\\b=-3a-32\end{cases}\Rightarrow a+8=-3a-32\Rightarrow\hept{\begin{cases}a=-10\\b=-2\end{cases}}}\)
- Vậy với \(a=-10;b=-2\)thì đa thức đã cho trở thành \(x^3-10x-2\)chia cho \(x+1\)dư 7 và chia cho \(x-3\)dư -5.
- Viết kết quả các phép chia này ta được:
\(\hept{\begin{cases}x^3-10x-2=\left(x+1\right)\left(x^2-x-9\right)+7\\x^3-10x-2=\left(x-3\right)\left(x^2+3x-1\right)-5\end{cases}\mid\forall x\in R}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1: Tìm n biết
a) -32 / -2^n= 4
\(-\frac{32}{-2^n}=4\Rightarrow\frac{32}{2^n}=4\Rightarrow4\cdot2^n=32\)
\(\Rightarrow2^n=8\Rightarrow2^n=2^3\Rightarrow n=3\)
b) ( 1/2 ) ^2n-1 = 1/8
Ta có : \(\left(\frac{1}{2}\right)^{2n-1}=\frac{1}{8}\)
mà \(\frac{1}{8}=\left(\frac{1}{2}\right)^3\)
\(\Rightarrow2n-1=3\)
\(\Rightarrow2n=4\)
\(\Rightarrow n=2\)
Bài 2:Tìm x
a)
\(\frac{x}{\frac{4}{2}}=\frac{4}{\frac{x}{2}}\Rightarrow\frac{x}{4}=\frac{4}{x}\)
\(\Rightarrow x^2=4\cdot4\)
\(\Rightarrow x^2=16\)
mà 16=42=(-4)2
\(\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
Vậy \(x\in\left\{4;-4\right\}\)
b) (x+5)^3 = -64
Vì (x+5)3 = -64
mà -64=(-4)3
\(\Rightarrow x+5=-4\)
\(\Rightarrow x=1\)
c) (2x-3)^2 = 9
\(\Rightarrow\orbr{\begin{cases}2x-3=3\\2x-3=-3\end{cases}\Rightarrow\orbr{\begin{cases}2x=6\\2x=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=3\\x=0\end{cases}}}\)
Vậy \(x\in\left\{3;0\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
*Tính M(x) - N(x)
M(x) = -x3 + 2,5x2 - 0,5x - 1
N(x) = -x3 + 2,5x2 + 2x - 6
------------------------------------
M(x) - N(x) = -2,5x + 5
=> M(x) - N(x) = A(x) = -2,5x + 5
Để đa thức A(x) có nghiệm => -2,5x + 5 = 0
=> -2,5x = -5
=> 2,5x = 5
=> x = 2
Tính M(x) + N(x)
M(x) = -x3 + 2,5x2 - 0,5x - 1
N(x) = -x3 + 2,5x2 + 2x - 6
---------------------------------------------
M(x) + N(x) = -2x3 + 5x2 + 1,5x - 7
=> M(x) + N(x) = B(x) = -2x3 + 5x2 + 1,5x - 7
Bậc của đa thức B(x) là 3
P/S : Cái dấu chấm đó là nhân hay phẩy?
a. \(\left(x-2\right)^2=1\)
=> x-2=1 hoặc x-2=-1
Với x-2=1 => x=3
Với x-2=-1 => x=1
b.\(\left(2n-1\right)^3=-8\)
=> 2n-1=-2 => 2n=-1 => n=-1/2
Kích nha!
a) (x-2)^2=1
=>(x-2)^2=1^2
=>x-2=1
=>x=3
b) (2n-1)^3=-8
=>(2n-1)^3=(-2)^3
=>2n-1=-2
=>2n=-1
=>n=-1/2