Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3^{x+1}.15=135\)
\(\Rightarrow3^{x+1}=9\)
\(\Rightarrow3^{x+1}=3^2\)
\(\Rightarrow x+1=2\)
\(\Rightarrow x=1\)
Vậy \(x=1\)
b) \(x+2x+2^2x+....+2^{2016}x=2^{2017}-1\\ \Rightarrow x\left(2+2^2+...+2^{2016}\right)=2^{2017}-1\\ \Rightarrow x\left(2^{2017}-2\right)=2^{2017}-1\)
c) \(x\left(x-1\right)+\left(x-1\right)^2=0\\ \Rightarrow x\left(x-1\right)+\left(x-1\right)\left(x-1\right)=0\\ \Rightarrow\left(x-1\right)\left(x+\left(x-1\right)\right)=0\\ \Rightarrow\left(x-1\right)\left(2x-1\right)=0\\ \Rightarrow\begin{cases}x-1=0\\2x-1=0\end{cases}\)
d) \(2^2.2^5\le2^{x-5}\le2^{10}\\ \Rightarrow2^7\le2^{x-5}\le2^{10}\)
a) 172123=(1724)30.1723
Ta thấy 1724 có tận cùng bằng 6 => (1724)30 có tận cùng bằng 6
1723 có tận cùng bằng 8
=> 172123 có tận cùng bằng 8
Mình giải một dạng thôi ;
2) \(3^x+3^{x+1}=36\\ \Rightarrow3^x\left(1+3\right)=36\\ \Rightarrow3^x=9\\ \Rightarrow x=2\)
b) \(2^x\left(1+2+2^2+2^3\right)=120\\ \Rightarrow2^x=8\\ \Rightarrow x=3\)
c) Khó
\(a,2^x+2^{x+1}=96\)
\(\Rightarrow2^x+2^x.2=96\) \(\Rightarrow2^x\left(1+2\right)=96\)
\(\Rightarrow2^x.3=96\) \(\Rightarrow2^x=32\)
\(\Rightarrow2^x=2^5\Rightarrow x=5\)
\(b,3^{4x+4}=81^{x+3}\)
\(\Rightarrow3^{4x+4}=3^{4x+12}\)
\(\Rightarrow4x+4=4x+12\) (Vô lý)
Vậy \(x\in\varnothing\)
a/ \(2^x+2^{x+1}=96\)
\(2^x+2^x.2=96\)
\(2^x\cdot\left(2+1\right)=96\)
\(2^x=\frac{96}{3}=32\)
\(2^x=2^5\)
\(=>x=5\)
b/ \(3^{4x+4}=81^{x+3}\)
\(\Rightarrow3^{4x+4}-81^{x+3}=0\)
\(3^{4x}.3^4-3^{4x}\cdot81^3=0\)
\(3^{4x}\cdot\left(81-81^3\right)=0\)
\(3^{4x}=\frac{0}{81-81^3}\)
\(3^{4x}=0\Rightarrow x=0\)
a/ \(\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)^2=0^2\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy ..
b/ \(x\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
Vậy ..
c/ \(x^2+4x=0\)
\(\Leftrightarrow x\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
Vậy ..
d/ \(\left(2x+3\right)^2=49\)
\(\Leftrightarrow\left(2x+3\right)^2=7^2=\left(-7\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=7\\2x+3=-7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
Vậy ..
a. (x-1)2 = 0
=> x-1=0 => x=1
b. x(x-5) = 0
=> \(\left[{}\begin{matrix}x=0\\x-5=0\end{matrix}\right.\)=> \(\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
c. x2 + 4x = 0
x(x+4) = 0
=>\(\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
d. (2x+3)2 = 49
(2x+3)2 = \(\left(\pm7\right)^2\)
=>\(\left[{}\begin{matrix}2x+3=7\\2x+3=-7\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
Câu 1:
a: \(\Leftrightarrow\left(x-1\right)^2\cdot\left[\left(x-1\right)^2-1\right]=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x-2\right)=0\)
hay \(x\in\left\{0;1;2\right\}\)
b: \(\Leftrightarrow\left(x-1\right)\cdot x\cdot\left(x-2\right)=0\)
hay \(x\in\left\{1;0;2\right\}\)
a: \(\Leftrightarrow5x-42=251\)
=>5x=293
hay x=293/5
b: \(\Leftrightarrow20-x=20\)
hay x=0
c: \(\Leftrightarrow x-4300-\dfrac{1}{50}=4250\)
\(\Leftrightarrow x=\dfrac{427501}{50}\)
d: =>(x+200):4=460-340=120
=>x+200=480
hay x=280
e: =>5+15(x+1)=500-480=20
=>15(x+1)=15
=>x+1=1
hay x=0
áp dụng công thức cho dãy S=1+2+3..+n=(n+1).n:2
=> x(x+1):2=45=> x(x+1)=90
=> x=9
vậy x=9
\(1+2+...+x=45\)
\(\Rightarrow\frac{\left(x+1\right)x}{2}=45\)
\(\Rightarrow x\left(x+1\right)=90\)
\(\Rightarrow x\left(x+1\right)=9.10\)
=> x = 9
Vậy số cần tìm là 9
a ) \(x^2-5=11\)
\(\Leftrightarrow x^2=11+5\)
\(\Leftrightarrow x^2=16\)
\(\Leftrightarrow x=\pm\sqrt{16}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=4\\x=-4\end{array}\right.\)
Vậy \(x\in\left\{4;-4\right\}\)
b ) \(4x^3+15=19\)
\(\Leftrightarrow4x^3=19-15\)
\(\Leftrightarrow4x^3=4\)
\(\Leftrightarrow x^3=4:4\)
\(\Leftrightarrow x^3=1\)
\(\Leftrightarrow x=1\)
Vậy \(x=1\)
\(a,\left(x-1\right)^2=0\\ \Leftrightarrow x=1\\ b,\left(x-3\right)^2=1\\ \Leftrightarrow\left[{}\begin{matrix}x-3=1\\x-3=-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)
a) \(\left(x-1\right)^2=0\)
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
b) \(\left(x-3\right)^2=1\)
\(\Rightarrow\left(x-3\right)^2=1^2\)
\(\Rightarrow\left[{}\begin{matrix}x-3=-1\\x-3=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)