K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2023

`|x+1/3|+|x+2/3|+|x+2/5|+|x+3/2|=33x`

`@TH1: x >= -1/3`

  `=>x+1/3+x+2/3+x+2/5+x+3/2=33x`

 `=>29x=29/10`

 `=>x=1/10` (t/m)

`@TH2: -2/3 <= x < -1/3`

 `=>-x-1/3+x+2/3+x+2/5+x+3/2=33x`

 `=>31x=67/30`

 `=>x=67/930` (ko t/m)

`@TH3:-2/5 <= x < -2/3`

  `=>-x-1/3-x-2/3+x+2/5+x+3/2=33x`

  `=>33x=9/10`

 `=>x=3/110` (ko t/m)

`@TH4:-3/2 <= x < -2/5`

  `=>-x-1/3-x-2/3-x-2/5+x+3/2=33x`

  `=>35x=1/10`

  `=>x=1/350` (ko t/m)

`@TH5: x < -3/2`

  `=>-x-1/3-x-2/3-x-2/5-x-3/2=33x`

  `=>37x=-29/10`

  `=>x=-29/370` (ko t/m)

5 tháng 1 2023

có VT \(\ge\) 0 với mọi x

=>VP:33x\(\ge\) 0 \(\Rightarrow\) x\(\ge\)0

\(\Rightarrow\) |x+1/3|\(\ge\)0;|x+2/3|\(\ge\) 0;|x+2/5|\(\ge\) 0;|x+3/2|\(\ge\) 0

=> (x+1/3)+(x+2/3)+(x+2/5)+(x+3/2)=33x

=>(x+x+x+x)+(1/3+2/3+2/5+3/2)=33x

=>4x+29/10=33x

=>  29/10=33x-4x

=>29/10=29x

=>x=29/10:29

=>x=1/10

  
11 tháng 9 2017

a) \(\dfrac{2}{5}\)-\(\left(\dfrac{1}{10}-x\right)\)=\(\left(\dfrac{-2}{5}-\dfrac{1}{2}\right)^2\)

\(\dfrac{2}{5}\)- \(\left(\dfrac{1}{10}-x\right)\)= \(\dfrac{1}{20}\)

\(\left(\dfrac{1}{10}-x\right)\)= \(\dfrac{2}{5}\)-\(\dfrac{1}{20}\)

\(\left(\dfrac{1}{10}-x\right)\)=\(\dfrac{7}{20}\)

x = \(\dfrac{1}{10}\)-\(\dfrac{7}{20}\)

x = \(\dfrac{-1}{4}\)

Chúc bn học tốt

a: =>4x-6-9=5-3x-3

=>4x-15=-3x+2

=>7x=17

hay x=17/7

b: \(\Leftrightarrow\dfrac{2}{3x}-\dfrac{1}{4}=\dfrac{4}{5}-\dfrac{7}{x}+2\)

=>2/3x+21/3x=4/5+2+1/4=61/20

=>23/3x=61/20

=>3x=23:61/20=460/61

hay x=460/183

a: TH1: x>=0

=>x+x=1/3

=>x=1/6(nhận)

TH2: x<0

Pt sẽ là -x+x=1/3

=>0=1/3(loại)

b: \(\Leftrightarrow\left\{{}\begin{matrix}x>=0\\x^2-x-2=0\end{matrix}\right.\Leftrightarrow x=2\)

c: \(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{1}{x-3}+\dfrac{1}{x-3}-\dfrac{1}{x-8}+\dfrac{1}{x-8}-\dfrac{1}{x-20}-\dfrac{1}{x-20}=\dfrac{-3}{4}\)

\(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{2}{x-20}=\dfrac{-3}{4}\)

\(\Leftrightarrow\dfrac{x-20-2x+2}{\left(x-1\right)\left(x-20\right)}=\dfrac{-3}{4}\)

\(\Leftrightarrow-3\left(x^2-21x+20\right)=4\left(-x-18\right)\)

\(\Leftrightarrow3x^2-63x+60=4x+72\)

=>3x^2-67x-12=0

hay \(x\in\left\{22.51;-0.18\right\}\)

\(\Leftrightarrow\dfrac{2}{x-3}-\dfrac{2}{x-2}+\dfrac{1}{x-8}-\dfrac{1}{x-3}+\dfrac{1}{x-20}-\dfrac{1}{x-8}-\dfrac{1}{x-20}=\dfrac{-3}{4}\)

\(\Leftrightarrow\dfrac{1}{x-3}-\dfrac{2}{x-2}=\dfrac{-3}{4}\)

\(\Leftrightarrow4\left(x-2\right)-8\left(x-3\right)=-3\left(x-3\right)\left(x-2\right)\)

\(\Leftrightarrow4x-8-8x+24+3\left(x^2-5x+6\right)=0\)

\(\Leftrightarrow3x^2-15x+18-4x+16=0\)

\(\Leftrightarrow3x^2-19x+34=0\)

\(\text{Δ}=\left(-19\right)^2-4\cdot3\cdot34=-47< 0\)

Do đó: Phương trình vô nghiệm

30 tháng 10 2017

\(\left|x+\dfrac{1}{1.5}\right|+\left|x+\dfrac{1}{5.9}\right|+\left|x+\dfrac{1}{9.14}\right|+...+\left|x+\dfrac{1}{397.401}\right|\ge0\)

\(\Rightarrow101x\ge0\)

\(\Rightarrow x\ge0\)

\(\Rightarrow x+\dfrac{1}{1.5}+x+\dfrac{1}{5.9}+...+x+\dfrac{1}{397.401}=101x\)

\(\Rightarrow101x+\left(\dfrac{1}{1.5}+\dfrac{1}{5.9}+...+\dfrac{1}{397.401}\right)=x\)

\(\Rightarrow\dfrac{1}{4}\left(\dfrac{4}{1.5}+\dfrac{4}{5.9}+...+\dfrac{4}{397.401}\right)=x\)

\(\Rightarrow x=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+....+\dfrac{1}{397}-\dfrac{1}{401}\right)\)

\(\Rightarrow x=\dfrac{1}{4}\left(1-\dfrac{1}{401}\right)\)

\(\Rightarrow x=\dfrac{1}{4}.\dfrac{400}{401}\)

\(\Rightarrow x=\dfrac{100}{401}\)

22 tháng 12 2017

a)

\(\left(3x+\dfrac{1}{3}\right)\left(x-\dfrac{1}{2}\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x+\dfrac{1}{3}=0\\x-\dfrac{1}{2}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{9}\\x=\dfrac{1}{2}\end{matrix}\right.\)

b)

\(\left(x-\dfrac{3}{2}\right)\left(2x+1\right)>0\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-\dfrac{3}{2}>0\\2x+1>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-\dfrac{3}{2}< 0\\2x+1< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\dfrac{3}{2}\\x>-\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x< \dfrac{3}{2}\\x< -\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x>\dfrac{3}{2}\\x< -\dfrac{1}{2}\end{matrix}\right.\)

1 tháng 1 2018

tiếp đi bạn

2 tháng 1 2018

a,

\(\dfrac{1}{4}x-1+\dfrac{1}{3}\left(\dfrac{5}{2}x-7\right)-\left(\dfrac{5}{8}x-2\right)=\dfrac{7}{2}\)

\(\Rightarrow\dfrac{1}{4}x-1+\dfrac{5}{6}x-\dfrac{7}{3}-\dfrac{5}{8}x+2=\dfrac{7}{2}\)

\(\Rightarrow\dfrac{1}{4}x+\dfrac{5}{6}x-\dfrac{5}{8}x=\dfrac{7}{2}+1+\dfrac{7}{3}-2\)

\(\Rightarrow\dfrac{11}{24}x=\dfrac{29}{6}\)

\(\Rightarrow x=\dfrac{116}{11}\)

b,

\(\left|2-\dfrac{3}{2}x\right|-4=x+2\)

\(\Rightarrow\left|2-\dfrac{3}{2}x\right|=x-2\)

\(\Rightarrow\left[{}\begin{matrix}2-\dfrac{3}{2}x=x+2\\2-\dfrac{3}{2}x=-\left(x+2\right)\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2-\dfrac{3}{2}x=x+2\\2-\dfrac{3}{2}x=-x-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2-2=x+\dfrac{3}{2}x\\2+2=-x+\dfrac{3}{2}x\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\dfrac{5}{2}x=0\\\dfrac{1}{2}x=4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=8\end{matrix}\right.\)

c,

\(-3\left(\dfrac{2}{5}x-\dfrac{1}{5}\right)-x\left(x-\dfrac{1}{2}\right)=\dfrac{1}{6}-x^2\)

\(\Rightarrow-\dfrac{6}{5}x+\dfrac{3}{5}-x^2+\dfrac{1}{2}x=\dfrac{1}{6}-x^2\)

\(\Rightarrow-\dfrac{7}{10}x=\dfrac{1}{6}-\dfrac{3}{5}-x^2+x^2\)

\(\Rightarrow-\dfrac{7}{10}x=-\dfrac{13}{30}\Leftrightarrow x=\dfrac{13}{21}\)

a: \(\dfrac{x+1}{5}+\dfrac{x+1}{6}=\dfrac{x+1}{7}+\dfrac{x+1}{8}\)

\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{5}+\dfrac{1}{6}-\dfrac{1}{7}-\dfrac{1}{8}\right)=0\)

=>x+1=0

hay x=-1

b: \(\Leftrightarrow\left(\dfrac{x-1}{2009}-1\right)+\left(\dfrac{x-2}{2008}-1\right)=\left(\dfrac{x-3}{2007}-1\right)+\left(\dfrac{x-4}{2006}-1\right)\)

=>x-2010=0

hay x=2010

c: \(\Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+10}+\dfrac{1}{x+10}-\dfrac{1}{x+17}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)

\(\Leftrightarrow\dfrac{x}{\left(x+2\right)\left(x+17\right)}=\dfrac{x+17-x-2}{\left(x+2\right)\left(x+17\right)}\)

=>x=15