\(\left(x-3^2\right)^3=\left(3^3\right)^2\)

b) \(\frac{...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2016

a) \(\left(x-3^2\right)^3=\left(3^3\right)^2=\left(3^2\right)^3\)

=> x - 32 = 32

=> x = 32 + 32 = 2. 32 = 18

b) => 15x = 8y => \(\frac{y}{15}=\frac{x}{8}=\frac{y-x}{15-8}=\frac{21}{7}=3\)

=> y = 30 ; x = 24

c) => (x - 3). 7 = (x + 5). 5

=> 7x - 21 = 5x + 5 => 7x - 5x = 5 + 21

=> 2x = 26 => x = 13

d) => (x - 1). (x + 3) = (x + 2). (x - 2)

=> x. (x + 3) - (x + 3) = x. (x - 2) + 2.(x - 2)

=> x2 + 3x - x - 3 = x2 - 2x + 2x - 4

=> 2x - 3 = -4 => 2x = -1 => x = -0,5

9 tháng 6 2016

a) \(\left(x-3^2\right)^3=\left(3^3\right)^2=\left(3^2\right)^3\)

\(\Rightarrow x-3^2=3^2\)

\(\Rightarrow x=3^2+3^2=9+9=18\)

Vậy x = 18

b) \(\frac{3x}{2}=\frac{4y}{5}=\frac{4y-3x}{5-2}=\frac{\left(3y-3x\right)+y}{3}=\frac{3\left(y-x\right)+y}{3}=\frac{63+y}{3}=\frac{y}{3}+21\)

Ta có: \(\frac{4y}{5}=\frac{y}{3}+21\)

\(\Rightarrow\frac{4y}{5}-\frac{y}{3}=21\)

\(\Rightarrow\frac{12y-5y}{15}=21\)

\(\Rightarrow7y=21.15=315\)

\(\Rightarrow y=315:7=45\)

Thay y = 45, ta đc :

\(\frac{3x}{2}=\frac{4.45}{5}=\frac{180}{5}=36\)

\(\Rightarrow3x=36.2=72\)

\(\Rightarrow x=72:3=24\)

Vậy x = 24, y = 45.

c, \(\frac{x-3}{x+5}=\frac{5}{7}\)

\(\Rightarrow\frac{x+5-8}{x+5}=\frac{5}{7}\)

\(\Rightarrow1+\frac{8}{x+5}=\frac{5}{7}\)

\(\Rightarrow\frac{8}{x+5}=-\frac{2}{7}\)

\(\Rightarrow x+5=8:-\frac{2}{7}=-28\)

\(\Rightarrow x=-28-5=-33\)

Vậy x = -33.

d) \(\frac{x-1}{x+2}=\frac{x-2}{x+3}\)

\(\Rightarrow\left(x-1\right)\left(x+3\right)=\left(x+2\right)\left(x-2\right)\)

\(\Rightarrow x\left(x+3\right)-\left(x+3\right)=x\left(x-2\right)+2\left(x-2\right)\)

\(\Rightarrow x^2+3x-x-3=x^2-2x+2x-4\)

\(\Rightarrow2x-3=-4\)

\(\Rightarrow2x=-1\)

\(\Rightarrow x=-\frac{1}{2}\)

Vậy \(x=-\frac{1}{2}\)

Bài 1: Thu gọn a) \(\frac{1}{5}x^4y^3-3x^4y^3\) b) \(5x^2y^5-\frac{1}{4}x^2y^5\) c) \(\frac{1}{7}x^2y^3.\left(-\frac{14}{3}xy^2\right)-\frac{1}{2}xy.\left(x^2y^{\text{4}}\right)\) d) \(\left(3xy\right)^2.\left(-\frac{1}{2}x^3y^2\right)\) e) \(-\frac{1}{4}xy^2+\frac{2}{5}x^2y+\frac{1}{2}xy^2-x^2y\) f) \(\frac{1}{2}x^4y.\left(-\frac{2}{3}x^3y^2\right)-\frac{1}{3}x^7y^3\) g) \(\frac{1}{2}x^2y.\left(-10x^3yz^2\right).\frac{1}{4}x^5y^3z\) h)...
Đọc tiếp

Bài 1: Thu gọn

a) \(\frac{1}{5}x^4y^3-3x^4y^3\)

b) \(5x^2y^5-\frac{1}{4}x^2y^5\)

c) \(\frac{1}{7}x^2y^3.\left(-\frac{14}{3}xy^2\right)-\frac{1}{2}xy.\left(x^2y^{\text{4}}\right)\)

d) \(\left(3xy\right)^2.\left(-\frac{1}{2}x^3y^2\right)\)

e) \(-\frac{1}{4}xy^2+\frac{2}{5}x^2y+\frac{1}{2}xy^2-x^2y\)

f) \(\frac{1}{2}x^4y.\left(-\frac{2}{3}x^3y^2\right)-\frac{1}{3}x^7y^3\)

g) \(\frac{1}{2}x^2y.\left(-10x^3yz^2\right).\frac{1}{4}x^5y^3z\)

h) \(4.\left(-\frac{1}{2}x\right)^2-\frac{3}{2}x.\left(-x\right)+\frac{1}{3}x^2\)

i) \(1\frac{2}{3}x^3y.\left(\frac{-1}{2}xy^2\right)^2-\frac{5}{4}.\frac{8}{15}x^3y.\left(-\frac{1}{2}xy^2\right)^2\)

k) \(-\frac{3}{2}xy^2.\left(\frac{3}{4}x^2y\right)^2-\frac{3}{5}xy.\left(-\frac{1}{3}x^4y^3\right)+\left(-x^2y\right)^2.\left(xy\right)^2\)

n) \(-2\frac{1}{5}xy.\left(-5x\right)^2+\frac{3}{4}y.\frac{2}{3}\left(-x^3\right)-\frac{1}{9}.\left(-x\right)^3.\frac{1}{3}y\)

m) \(\left(-\frac{1}{3}xy^2\right)^2.\left(3x^2y\right)^3.\left(-\frac{5}{2}xy^2z^3\right)^{^2}\)

p) \(-2y.\left|2\right|x^4y^5.\left|-\frac{3}{4}\right|x^3y^2z\)

1
26 tháng 7 2019

Bài 1:

a) \(\frac{1}{5}x^4y^3-3x^4y^3\)

= \(\left(\frac{1}{5}-3\right)x^4y^3\)

= \(-\frac{14}{5}x^4y^3.\)

b) \(5x^2y^5-\frac{1}{4}x^2y^5\)

= \(\left(5-\frac{1}{4}\right)x^2y^5\)

= \(\frac{19}{4}x^2y^5.\)

Mình chỉ làm 2 câu thôi nhé, bạn đăng nhiều quá.

Chúc bạn học tốt!

29 tháng 7 2019

cảm ơn nha

chúc bạn học tốt

18 tháng 10 2018

\(3\frac{1}{2}-\frac{1}{2}.\left(-4,25-\frac{3}{4}\right)^2:\frac{5}{4}\)

\(=\frac{7}{2}-\frac{1}{2}.\left(-4,25-0,75\right)^2:\frac{5}{4}\)

\(=\frac{7}{2}-\frac{1}{2}.\left(-5\right)^2:\frac{5}{4}\)

\(=\frac{7}{2}-\frac{1}{2}.5.\frac{4}{5}\)

\(=\frac{7}{2}-2\)

\(=\frac{7}{2}-\frac{4}{2}\)

\(=\frac{3}{2}\)

\(\frac{3}{7}.1\frac{1}{2}+\frac{3}{7}.0,5-\frac{3}{7}.9\)

\(=\frac{3}{7}.\left(\frac{3}{2}+\frac{1}{2}-9\right)\)

\(=\frac{3}{7}.\left(2-9\right)\)

\(=\frac{3}{7}.\left(-7\right)\)

\(=-3\)

\(\frac{125^{2016}.8^{2017}}{50^{2017}.20^{2018}}=\frac{\left(5^3\right)^{2016}.\left(2^3\right)^{2017}}{\left(5^2\right)^{2017}.2^{2017}.\left(2^2\right)^{2018}.5^{2018}}=\frac{\left(5^3\right)^{2016}.\left(2^3\right)^{2017}}{\left(5^3\right)^{2017}.\left(2^3\right)^{2017}.2.5}=\frac{1}{5^4.2}=\frac{1}{1250}\)( tính nhẩm, ko chắc đúng )

18 tháng 10 2018

a) \(3\frac{1}{2}-\frac{1}{2}\cdot\left(-4,25-\frac{3}{4}\right)^2\) : \(\frac{5}{4}\)

\(3\cdot25:\frac{5}{4}\)

\(3\cdot\left(25:\frac{5}{4}\right)\)

=\(3\cdot20\)

=60

b)=\(\frac{3}{7}\cdot\left(1\frac{1}{2}+0,5-9\right)\)

=\(\frac{3}{7}\cdot\left(-7\right)\)

=\(-3\)

c) = 

14 tháng 10 2020

a) \(\left|2x+\frac{3}{4}\right|=\frac{1}{2}\)

     \(\orbr{\begin{cases}2x+\frac{3}{4}=\frac{1}{2}\\2x+\frac{3}{4}=\frac{-1}{2}\end{cases}}\) =>   \(\orbr{\begin{cases}2x=\frac{1}{2}-\frac{3}{4}\\2x=\frac{-1}{2}-\frac{3}{4}\end{cases}}\)  =>   \(\orbr{\begin{cases}2x=\frac{-1}{4}\\2x=\frac{-5}{4}\end{cases}}\) =>   \(\orbr{\begin{cases}x=\frac{-1}{8}\\x=\frac{-5}{8}\end{cases}}\)

Vậy \(x=\left\{\frac{-1}{8},\frac{-5}{8}\right\}\)

b) \(\frac{3x}{2,7}=\frac{\frac{1}{4}}{2\frac{1}{4}}\)\(\frac{3x}{2,7}=\frac{\frac{1}{4}}{\frac{9}{4}}\)

=> \(3x.\frac{9}{4}=2,7.\frac{1}{4}\)=>  \(\frac{27x}{4}=\frac{27}{40}\)

\(27x.40=27.4\)

\(1080.x=108\)

             \(x=\frac{1}{10}\)

Vậy \(x=\frac{1}{10}\)

c) \(\left|x-1\right|+4=6\)

\(\left|x-1\right|=6-4\)

\(\left|x-1\right|=2\)

\(\orbr{\begin{cases}x-1=2\\x-1=-2\end{cases}}\)=>  \(\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)

Vậy \(x=\left[3,-1\right]\)

d) \(\frac{x}{3}=\frac{y}{5}=>\frac{y}{5}=\frac{x}{3}=>\frac{y-x}{5-3}=\frac{24}{2}=12\)

e) \(\left(x^2-3\right)^2=16\)

\(\left(x^2-3\right)^2=4^2\)\(=>x^2-3=4\)

\(x^2=7=>x=\sqrt{7}\)

Vậy \(x=\sqrt{7}\)

f) \(\frac{3}{4}+\frac{2}{5}x=\frac{29}{60}\)

               \(\frac{2}{5}x=\frac{29}{60}-\frac{3}{4}\) 

               \(\frac{2}{5}x=-\frac{4}{15}\)

          \(x=-\frac{4}{15}:\frac{2}{5}=-\frac{4}{15}.\frac{5}{2}=-\frac{2}{3}\)

Vậy \(x=-\frac{2}{3}\)

g) \(\left(-\frac{1}{3}\right)^3.x=\frac{1}{81}\)

\(\left(-\frac{1}{27}\right).x=\frac{1}{81}\)

\(x=\left(-\frac{1}{27}\right):\frac{1}{81}=\left(-\frac{1}{27}\right).81=-3\)

Vậy \(x=-3\)

k)\(\frac{3}{4}-\frac{2}{5}x=\frac{29}{60}\)

\(\frac{2}{5}x=\frac{3}{4}-\frac{29}{60}\)

\(\frac{2}{5}x=\frac{4}{15}\)

      \(x=\frac{2}{5}-\frac{4}{15}=>x=\frac{2}{15}\)

Vậy \(x=\frac{2}{15}\)

I) \(\frac{3}{5}x-\frac{1}{2}=-\frac{1}{7}\)

\(\frac{3}{5}x=-\frac{1}{7}+\frac{1}{2}\)

\(\frac{3}{5}x=\frac{5}{14}\)

\(x=\frac{5}{14}:\frac{3}{5}=\frac{5}{14}.\frac{5}{3}=\frac{25}{42}\)

Vậy \(x=\frac{25}{42}\)

26 tháng 10 2016

a ) \(\left(\frac{2}{5}-x\right):1\frac{1}{3}+\frac{1}{2}=-4\)

     \(\left(\frac{2}{5}-x\right):\frac{4}{3}+\frac{1}{2}=-4\)

     \(\left(\frac{2}{5}-x\right):\frac{4}{3}=-4-\frac{1}{2}\)

     \(\left(\frac{2}{5}-x\right):\frac{4}{3}=-\frac{9}{2}\)

        \(\frac{2}{5}-x=-\frac{9}{2}.\frac{4}{3}\)

        \(\frac{2}{5}-x=-3\)

                   \(x=\frac{2}{5}-\left(-3\right)\)

                   \(x=\frac{2}{5}+3\)

                   \(x=\frac{3}{5}-\frac{15}{5}\)

                   \(x=-\frac{12}{5}\)

Vay \(x=-\frac{12}{5}\) 

    

  

26 tháng 10 2016

b ) \(\left(-3+\frac{3}{x}-\frac{1}{3}\right):\left(1+\frac{2}{5}+\frac{2}{3}\right)=-\frac{5}{4}\)

     \(\left(-3+\frac{3}{x}-\frac{1}{3}\right):\left(\frac{15}{15}+\frac{6}{15}+\frac{10}{15}\right)=-\frac{5}{4}\)

     \(\left(-3+\frac{3}{x}-\frac{1}{3}\right):\left(\frac{15+6+10}{15}\right)=-\frac{5}{4}\)

     \(\left(-3+\frac{3}{x}-\frac{1}{3}\right):\frac{31}{15}=-\frac{5}{4}\)

     \(\left(-3+\frac{3}{x}-\frac{1}{3}\right)=-\frac{5}{4}.\frac{31}{15}\)

     \(\left(-3+\frac{3}{x}-\frac{1}{3}\right)=-\frac{1}{4}.\frac{31}{3}\)

        \(-3+\frac{3}{x}-\frac{1}{3}=-\frac{31}{12}\)

        \(-3+\frac{3}{x}=-\frac{31}{12}+\frac{1}{2}\)

        \(-3+\frac{3}{x}=-\frac{31}{12}+\frac{6}{12}\)

        \(-3+\frac{3}{x}=\frac{-25}{12}\)

                     \(\frac{3}{x}=\frac{-25}{12}+3\)

                      \(\frac{3}{x}=\frac{-25}{12}+\frac{36}{12}\)

                      \(\frac{3}{x}=\frac{5}{6}\)

                      \(\frac{18}{6x}=\frac{5x}{6x}\)

Đèn dây , bạn tự làm tiếp nhé , de rồi chứ

3 tháng 7 2019

a) \(\left|2-\frac{3}{2}x\right|-4=x+2\)

=> \(\left|2-\frac{3}{2}x\right|=x+2+4\)

=> \(\left|2-\frac{3}{2}x\right|=x+6\)

ĐKXĐ : \(x+6\ge0\) => \(x\ge-6\)

Ta có: \(\left|2-\frac{3}{2}x\right|=x+6\)

=> \(\orbr{\begin{cases}2-\frac{3}{2}x=x+6\\2-\frac{3}{2}x=-x-6\end{cases}}\)

=> \(\orbr{\begin{cases}2-6=x+\frac{3}{2}x\\2+6=-x+\frac{3}{2}x\end{cases}}\)

=> \(\orbr{\begin{cases}\frac{5}{2}x=-4\\\frac{1}{2}x=8\end{cases}}\)

=> \(\orbr{\begin{cases}x=-\frac{8}{5}\\x=16\end{cases}}\) (tm)

b) \(\left(4x-1\right)^{30}=\left(4x-1\right)^{20}\)

=> \(\left(4x-1\right)^{30}-\left(4x-1\right)^{20}=0\)

=> \(\left(4x-1\right)^{20}.\left[\left(4x-1\right)^{10}-1\right]=0\)

=> \(\orbr{\begin{cases}\left(4x-1\right)^{20}=0\\\left(4x-1\right)^{10}-1=0\end{cases}}\)

=> \(\orbr{\begin{cases}4x-1=0\\\left(4x-1\right)^{10}=1\end{cases}}\)

=> \(\orbr{\begin{cases}4x=1\\4x-1=\pm1\end{cases}}\)

=> x = 1/4

hoặc x = 0 hoặc x = 1/2

26 tháng 4 2018

Câu b) tạm thời ko bít làm =.= 

Bài 1 : 

\(d)\) \(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2x\)

\(\Leftrightarrow\)\(\frac{4^5.4}{3^5.3}.\frac{6^5.6}{2^5.2}=2x\)

\(\Leftrightarrow\)\(\frac{4^6}{3^6}.\frac{6^6}{2^6}=2x\)

\(\Leftrightarrow\)\(\frac{2^{12}}{3^6}.\frac{2^6.3^6}{2^6}=2x\)

\(\Leftrightarrow\)\(\frac{2^{12}}{3^6}.\frac{3^6}{1}=2x\)

\(\Leftrightarrow\)\(2^{12}=2x\)

\(\Leftrightarrow\)\(x=\frac{2^{12}}{2}\)

\(\Leftrightarrow\)\(x=2^{11}\)

\(\Leftrightarrow\)\(x=2048\)

Vậy \(x=2048\)

Chúc bạn học tốt ~ 

26 tháng 4 2018

Bài 1 : 

\(a)\) Ta có : 

\(4+\frac{x}{7+y}=\frac{4}{7}\)

\(\Leftrightarrow\)\(\frac{x}{7+y}=\frac{4}{7}-4\)

\(\Leftrightarrow\)\(\frac{x}{7+y}=\frac{-24}{7}\)

\(\Leftrightarrow\)\(\frac{x}{-24}=\frac{7+y}{7}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{-24}=\frac{7+y}{7}=\frac{x+7+y}{-24+7}=\frac{22+7}{-17}=\frac{29}{-17}=\frac{-29}{17}\)

Do đó : 

\(\frac{x}{-24}=\frac{-29}{17}\)\(\Rightarrow\)\(x=\frac{-29}{17}.\left(-24\right)=\frac{696}{17}\)

\(\frac{7+y}{7}=\frac{-29}{17}\)\(\Rightarrow\)\(y=\frac{-29}{17}.7-7=\frac{-322}{17}\)

Vậy \(x=\frac{696}{17}\) và \(y=\frac{-322}{17}\)

Chúc bạn học tốt ~ 

14 tháng 9 2017

\(a,\frac{-1}{2}+\left(x-3\right):\frac{-1}{2}=-1\frac{2}{3}.\)

\(\Rightarrow\left(x-3\right):\frac{-1}{2}=-1\frac{2}{3}-\frac{-1}{2}=\frac{-7}{6}\)

\(\Rightarrow x-3=\frac{-7}{6}\cdot\frac{-1}{2}=\frac{7}{12}\)

\(\Rightarrow x=\frac{7}{12}+3=3\frac{7}{12}\)

\(b.2,25+\frac{3}{2}:\left(x-5\right)=2\frac{1}{2}\)

\(\Rightarrow\frac{3}{2}:\left(x-5\right)=2\frac{1}{2}-2,25=\frac{1}{4}\)

\(\Rightarrow x-5=\frac{3}{2}:\frac{1}{4}=6\)

\(\Rightarrow x=6+5=11\)

\(c,\left(\frac{1}{3}-x\right)^2=\frac{1}{4}=\left(\frac{1}{2}\right)^2=\left(-\frac{1}{2}\right)^2\)

\(\Rightarrow\orbr{\begin{cases}\frac{1}{3}-x=\frac{1}{2}\\\frac{1}{3}-x=-\frac{1}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}-\frac{1}{2}=-\frac{1}{6}\\x=\frac{1}{3}-\frac{-1}{2}=\frac{5}{6}\end{cases}}\)

\(d,\frac{3}{2}+\frac{x-1}{3}=1\)

\(\Rightarrow\frac{x-1}{3}=1-\frac{3}{2}=-\frac{1}{2}\)

\(\Rightarrow x-1=-\frac{1}{2}\cdot3=-\frac{3}{2}\)

\(\Rightarrow x=-\frac{3}{2}+1=\frac{1}{2}\)

\(e,-\frac{6}{8}+\frac{x}{12}=\frac{5}{6}\)

\(\Rightarrow\frac{x}{12}=\frac{5}{6}-\frac{-6}{8}=\frac{19}{12}\)

\(\Rightarrow x=19\)

\(g,\frac{1}{2}-\frac{1}{3}\left(x-2\right)=-\frac{2}{3}\)

\(\Rightarrow-\frac{1}{3}\left(x-2\right)=-\frac{2}{3}-\frac{1}{2}=-\frac{7}{6}\)

\(\Rightarrow x-2=\frac{-7}{6}:\frac{-1}{3}=\frac{7}{2}\)

\(\Rightarrow x=\frac{7}{2}+2=2\frac{7}{2}\)

\(h,\frac{5}{2}\left(x+1\right)-\frac{1}{2}=3\frac{1}{2}\)

\(\Rightarrow\frac{5}{2}\left(x+1\right)=3\frac{1}{2}-\frac{1}{2}=3\)

\(\Rightarrow x+1=3:\frac{5}{2}=\frac{6}{5}\)

\(\Rightarrow x=\frac{6}{5}-1=\frac{1}{5}\)

\(k,\frac{x}{3}-\frac{1}{2}=-2\left(x+1\right)+3\)

\(\Rightarrow x\cdot\frac{1}{3}-\frac{1}{2}=-2x-2+3\)

\(\Rightarrow\frac{1}{3}x+2x=-2+3+\frac{1}{2}\)

\(\Rightarrow\frac{7}{3}x=\frac{3}{2}\Rightarrow x=\frac{3}{2}:\frac{7}{2}=\frac{3}{7}\)

a: =>\(\left(x+1\right)^{x+7}-\left(x+1\right)^{x+5}=0\)

=>x(x+1)(x+2)=0

hay \(x\in\left\{0;-1;-2\right\}\)

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{z}{\dfrac{5}{2}}=\dfrac{3x-5y+6z}{3\cdot3-5\cdot7+6\cdot\dfrac{5}{2}}=\dfrac{21}{-11}=\dfrac{-21}{11}\)

Do đó: x=-63/11; y=-147/11; z=-105/22

c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{12}=\dfrac{x+y+z}{15+20+12}=\dfrac{\dfrac{-7}{2}}{47}=-\dfrac{7}{94}\)

Do đó: x=-105/94; y=-140/94=-70/47; z=-84/94=-42/47