Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có: \(A=\dfrac{2011+2012}{2012+2013}=\dfrac{2011}{2012+2013}+\dfrac{2012}{2012+2013}\)
Dễ thấy:
\(\dfrac{2011}{2012+2013}< \dfrac{2011}{2012};\dfrac{2012}{2012+2013}< \dfrac{2012}{2013}\)
\(\Rightarrow A=\dfrac{2011}{2012+2013}+\dfrac{2012}{2012+2013}< B=\dfrac{2011}{2012}+\dfrac{2012}{2013}\)
Bài 2:
\(S=\dfrac{1}{4\cdot7}+\dfrac{1}{7\cdot10}+...+\dfrac{1}{37\cdot40}\)
\(=\dfrac{1}{3}\left(\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{37\cdot40}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{37}-\dfrac{1}{40}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{4}-\dfrac{1}{40}\right)=\dfrac{1}{3}\cdot\dfrac{9}{40}=\dfrac{3}{40}< \dfrac{1}{3}\)
\(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{94.97}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{94}-\dfrac{1}{97}\)
\(=1-\dfrac{1}{97}\)
\(=\dfrac{96}{97}\)
\(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{94.97}\)
\(=3\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{94}-\dfrac{1}{97}\right)\)
\(=3\left(1-\dfrac{1}{97}\right)\)
\(=3.\dfrac{96}{97}=\dfrac{288}{97}\)
\(S=\) \(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{97.100}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}\)
\(=\dfrac{99}{100}\)
\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+.....+\dfrac{3}{97.100}\)
\(S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+....+\dfrac{1}{97}-\dfrac{1}{100}\)
(do \(\dfrac{n}{a.\left(a+n\right)}=\dfrac{1}{a}-\dfrac{1}{a+n}\) với mọi \(a\in N\)*)
\(S=1-\dfrac{1}{100}=\dfrac{99}{100}\)
Vậy \(S=\dfrac{99}{100}\)
Chúc bạn học tốt!!!
Ta có:
\(S=\dfrac{3}{3}.\left(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{43}-\dfrac{1}{46}\right)\)
\(S=1.\left(\dfrac{1}{1}-\dfrac{1}{46}\right)\)
\(S=1.\dfrac{45}{46}=\dfrac{45}{46}\)
Vì \(\dfrac{45}{46}< \dfrac{46}{46}\) nên \(\dfrac{45}{46}< 1\).
Vậy S < 1.
\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{43.46}\)
\(S=\dfrac{3}{3}\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{43.46}\right)\)
Ta thấy:
\(\dfrac{3}{1.4}=1-\dfrac{1}{4};\dfrac{3}{4.7}=\dfrac{1}{4}-\dfrac{1}{7};\dfrac{3}{7.10}=\dfrac{1}{7}-\dfrac{1}{10};\)
\(...;\dfrac{3}{43.46}=\dfrac{1}{43}-\dfrac{1}{46}\)
\(\Rightarrow S=1\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{43}-\dfrac{1}{46}\right)\)
\(\Rightarrow S=1\left(1-\dfrac{1}{46}\right)\)
\(\Rightarrow S=1.\dfrac{45}{46}=\dfrac{45}{46}\)
S = \(\dfrac{1}{1.4}\)+ \(\dfrac{1}{4.7}\)+...+\(\dfrac{1}{2002.2005}\)
S = ( 1 - \(\dfrac{1}{4}\)+ \(\dfrac{1}{4}\)-\(\dfrac{1}{7}\)+\(\dfrac{1}{7}\)-...+\(\dfrac{1}{2002}\)-\(\dfrac{1}{2005}\)) . \(\dfrac{1}{3}\)
S = ( 1 - \(\dfrac{1}{2005}\)) . \(\dfrac{1}{3}\)
S = \(\dfrac{2004}{2005}\). \(\dfrac{1}{3}\)
S = \(\dfrac{2014}{6015}\)
a) \(S=\dfrac{1}{1.4}+\dfrac{1}{4.7}+...+\dfrac{1}{2002.2005}\)
\(=\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{2002}-\dfrac{1}{2005}\right)\)
\(=\dfrac{1}{3}\left(1-\dfrac{1}{2005}\right)\)
\(=\dfrac{1}{3}.\dfrac{2004}{2005}=\dfrac{668}{2005}\)
KL.
b) \(P=\dfrac{3}{1.6}+\dfrac{3}{6.11}+\dfrac{3}{11.16}+...+\dfrac{3}{96.101}\)
\(=\dfrac{3}{5}\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{96}-\dfrac{1}{101}\right)\)
\(=\dfrac{3}{5}\left(1-\dfrac{1}{101}\right)\)
\(=\dfrac{3}{5}.\dfrac{100}{101}=\dfrac{60}{101}\)
KL.
c) \(Q=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{98.99.100}\)
\(=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{99.100}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{9900}\right)\)
\(=\dfrac{1}{2}.\dfrac{1}{19800}=\dfrac{1}{39600}\)
KL.
5\(\dfrac{8}{17}\):x + (-\(\dfrac{1}{17}\)) : x + 3\(\dfrac{1}{17}\) : 17\(\dfrac{1}{3}\)= \(\dfrac{4}{17}\)
\(\dfrac{93}{17}\).\(\dfrac{1}{x}\) + (-\(\dfrac{1}{17}\)) .\(\dfrac{1}{x}\) +\(\dfrac{3}{17}\)= \(\dfrac{4}{17}\)
\(\dfrac{1}{x}\).\(\dfrac{92}{17}\)=\(\dfrac{1}{17}\)
\(\dfrac{1}{1.4}\)+\(\dfrac{1}{4.7}\)+\(\dfrac{1}{7.10}\)+...+\(\dfrac{1}{x.\left(x+3\right)}\)=\(\dfrac{6}{19}\)
a: \(\Leftrightarrow\dfrac{8}{5}+\dfrac{2}{5}\cdot x=\dfrac{16}{5}\)
=>2/5x=8/5
=>x=4
b: \(\Leftrightarrow\left(\dfrac{1}{24}-\dfrac{1}{25}+\dfrac{1}{25}-\dfrac{1}{26}+...+\dfrac{1}{39}-\dfrac{1}{40}\right)\cdot120+\dfrac{1}{3}x=-4\)
\(\Leftrightarrow x\cdot\dfrac{1}{3}+2=-4\)
=>1/3x=-6
=>x=-18
c: =>2|x-1/3|=0,24-4/5=-0,56<0
1.
E = \(\dfrac{3}{1.4}\) + \(\dfrac{3}{4.7}\) + \(\dfrac{3}{7.10}\) + \(\dfrac{3}{10.13}\) + \(\dfrac{3}{13.16}\) + \(\dfrac{3}{16.19}\) + \(\dfrac{3}{19.22}\)
E = 1 - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{10}\) + ... +\(\dfrac{1}{19}\) - \(\dfrac{1}{22}\)
E = 1 - \(\dfrac{1}{22}\)
E = \(\dfrac{21}{22}\)
2.
(x - 4)(x - 5) = 0
TH1:
x - 4 = 0 => x = 4
TH2:
x - 5 = 0 => x = 5
Vậy: x = 4 hoặc x = 5
Bài 1: Tính ( hợp lý nếu có thể )
\(A=\dfrac{-3}{8}+\dfrac{12}{25}+\dfrac{5}{-8}+\dfrac{2}{-5}+\dfrac{13}{25}\)
\(=\left(\dfrac{-3}{8}+\dfrac{5}{-8}\right)+\left(\dfrac{12}{25}+\dfrac{13}{25}\right)+\dfrac{2}{-5}\)
\(=-1+1+\dfrac{2}{-5}\)
\(=0+\dfrac{2}{-5}\)
\(=\dfrac{2}{-5}\)
\(B=\dfrac{-3}{15}+\left(\dfrac{2}{3}+\dfrac{3}{15}\right)\)
\(=\left(\dfrac{-3}{15}+\dfrac{3}{15}\right)+\dfrac{2}{3}\)
\(=0+\dfrac{2}{3}\)
\(=\dfrac{2}{3}\)
\(C=\dfrac{-5}{21}+\left(\dfrac{-16}{21}+1\right)\)
\(=\left(\dfrac{-5}{21}+\dfrac{-16}{21}\right)+1\)
\(=-1+1\)
\(=0\)
\(D=\left(\dfrac{-1}{6}+\dfrac{5}{-12}\right)+\dfrac{7}{12}\)
\(=\left(\dfrac{5}{-12}+\dfrac{7}{12}\right)+\dfrac{-1}{6}\)
\(=\dfrac{1}{6}+\dfrac{-1}{6}\)
\(=0\)
Bài 2: Tìm x,biết:
a) \(x+\dfrac{2}{3}=\dfrac{4}{5}\)
\(x=\dfrac{4}{5}-\dfrac{2}{3}\)
\(x=\dfrac{2}{15}\)
Vậy \(x=\dfrac{2}{15}\)
b) \(x-\dfrac{2}{3}=\dfrac{7}{21}\)
\(\Rightarrow x-\dfrac{2}{3}=\dfrac{1}{3}\)
\(x=\dfrac{1}{3}+\dfrac{2}{3}\)
\(x=\dfrac{3}{3}=1\)
Vậy \(x=1\)
c) sai đề hay sao ấy bạn.bỏ dấu - ở x thì đúng đề.mk giải luôn nha!
\(x-\dfrac{3}{4}=\dfrac{-8}{11}\)
\(x=\dfrac{-8}{11}+\dfrac{3}{4}\)
\(x=\dfrac{1}{44}\)
Vậy \(x=\dfrac{1}{44}\)
d) \(\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\)
\(\dfrac{2}{5}+x=\dfrac{11}{12}-\dfrac{2}{3}\)
\(\dfrac{2}{5}+x=\dfrac{1}{4}\)
\(x=\dfrac{1}{4}-\dfrac{2}{5}\)
\(x=-\dfrac{3}{20}\)
Vậy \(x=-\dfrac{3}{20}\)
\(x+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+\dfrac{3}{10\cdot13}+...+\dfrac{3}{37\cdot40}=\dfrac{-37}{40}\\ x+\left(\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+\dfrac{3}{10\cdot13}+...+\dfrac{3}{37\cdot40}\right)=\dfrac{-37}{40}\\ x+\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+...+\dfrac{1}{37}-\dfrac{1}{40}\right)=\dfrac{-37}{40}\\ x+\left(\dfrac{1}{4}-\dfrac{1}{40}\right)=\dfrac{-37}{40}\\ x+\dfrac{9}{40}=\dfrac{-37}{40}\\ x=\dfrac{-37}{40}-\dfrac{9}{40}\\ x=\dfrac{-46}{40}\\ x=\dfrac{-23}{20}\)
Vậy \(x=\dfrac{-23}{20}\)