K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2023

\(^{x^5+px+3q=0\Leftrightarrow x^5+px=-3q\Leftrightarrow x\left(x^4+p\right)=-3q}\)

Theo đề bài \(x^4+p>0\Rightarrow x< 0\) (1)

q là số nguyên tố => \(-3q=\left(-3\right).q=\left(-1\right).3q=\left(-3q\right).1=\left(-q\right).3\)(2)

Từ (1) (2) \(\Rightarrow x=\left\{-1;-3;-q;-3q\right\}\)

+ Xét \(x=-1\Rightarrow1+p=3q\)

q là số nguyên tố \(\Rightarrow\left[{}\begin{matrix}q=2\\q>2\end{matrix}\right.\)

\(q=2\Rightarrow p=5,x=-1\) (thoả mãn)

\(q>2\Rightarrow\)q là số lẻ => p là số chẵn, p là số nguyên tố\(\Rightarrow p=2,q=1\) (loại )

+ Xét \(x=-3\Rightarrow p+81=q\Rightarrow p=2,q=83,x=-3\) (thoả mãn)

+ Xét \(x=-q\Rightarrow q^4+p=3\Rightarrow q=1,p=2\) (loại)

+ Xét \(x=-3q\Rightarrow81q^4+p=1\) (loại)

Vậy \(\left(x,p,q\right)\) thoả mãn là \(\left(-1,5,2\right);\left(-3;2;83\right)\)

14 tháng 10 2023

thầy mình gửi bài này lớ 6

ko có số âm

9 tháng 1 2024

loading...

9 tháng 1 2024

ai giúp mình với

NV
9 tháng 1 2024

a.

Nếu p và q cùng lẻ \(\Rightarrow pq+13\) là số chẵn lớn hơn 2 \(\Rightarrow\) là hợp số (loại)

Nếu p;q cùng chẵn \(\Rightarrow5p+q\) là số chẵn lớn hơn 2 \(\Rightarrow\) là hợp số (loại)

\(\Rightarrow\) p và q phải có 1 số chẵn, 1 số lẻ

TH1: p chẵn và q lẻ \(\Rightarrow p=2\)

Khi đó \(2q+13\) và \(q+10\) đều là số nguyên tố

- Nếu \(q=3\Rightarrow2q+13=2.3+13=19\) là SNT và \(q+10=13\) là SNT (thỏa mãn)

- Với \(q>3\Rightarrow q\) không chia hết cho 3 \(\Rightarrow q=3k+1\) hoặc \(q=3k+2\)

Với \(q=3k+1\Rightarrow2q+13=2\left(3k+1\right)=3\left(2k+5\right)⋮3\) là hợp sô (loại)

Với \(q=3k+2\Rightarrow q+10=3k+12=3\left(k+4\right)⋮3\) là hợp số (loại)

TH2: p lẻ và q chẵn \(\Rightarrow q=2\)

Khi đó \(2p+13\) và \(5p+2\) đều là số nguyên tố

- Với \(p=3\Rightarrow2p+13=19\) là SNT và \(5p+2=17\) là SNT (thỏa mãn)

- Với \(p>3\Rightarrow p\) ko chia hết cho 3 \(\Rightarrow p=3k+1\) hoặc \(p=3k+2\)

Với \(p=3k+1\Rightarrow2p+13=3\left(2p+5\right)⋮3\) là hợp số (loại)

Với \(p=3k+2\Rightarrow5p+2=3\left(5k+4\right)⋮3\) là hợp số (loại)

Vậy \(\left(p;q\right)=\left(2;3\right);\left(3;2\right)\) thỏa mãn yêu cầu

NV
9 tháng 1 2024

b.

x là số tự nhiên \(\Rightarrow x^2+4x+32>x+4\)

Do p là số nguyên tố mà \(\left(x^2+4x+32\right)\left(x+4\right)=p^n\)

\(\Rightarrow\left\{{}\begin{matrix}x^2+4x+32=p^a\\x+4=p^b\end{matrix}\right.\) với \(\left\{{}\begin{matrix}a>b\\a+b=n\end{matrix}\right.\)

\(\Rightarrow\dfrac{x^2+4x+32}{x+4}=\dfrac{p^a}{p^b}\)

\(\Rightarrow x+\dfrac{32}{x+4}=p^{a-b}\)

Do \(p^{a-b}\) là số nguyên dương khi \(a>b\) và x là số nguyên

\(\Rightarrow\dfrac{32}{x+4}\) là số nguyên

\(\Rightarrow x+4=Ư\left(32\right)\)

Mà \(x+4\ge4\Rightarrow x+4=\left\{4;8;16;32\right\}\)

\(\Rightarrow x=\left\{0;4;12;28\right\}\)

Thay vào \(\left(x^2+4x+32\right)\left(x+4\right)=p^n\)

- Với \(x=0\Rightarrow128=p^n\Rightarrow2^7=p^n\Rightarrow p=2;n=7\)

- Với \(x=4\Rightarrow512=p^n\Rightarrow2^9=p^n\Rightarrow p=2;n=9\)

- Với \(x=12\Rightarrow3584=p^n\) (loại do 3584 không phải lũy thừa của 1 SNT)

- Với \(x=28\Rightarrow29696=p^n\) (loại do 29696 không phải lũy thừa của 1 SNT)

Vậy \(\left(x;p;n\right)=\left(0;2;7\right);\left(4;2;9\right)\)

10 tháng 8 2023

Bài 2 có lỗi không bạn?
q+qp> 2 mà đây là 1 số nguyên tố nên đây là số lẻ
 mà dù q chẵn hay lẻ thì q+qp chẵn (vô lý)

1:

a: =>7(x+1)=72-16=56

=>x+1=8

=>x=7

b: (2x-1)^3=4^12:16=4^10

=>\(2x-1=\sqrt[3]{4^{10}}\)

=>\(2x=1+\sqrt[3]{4^{10}}\)

=>\(x=\dfrac{1+\sqrt[3]{4^{10}}}{2}\)(loại)

c: \(\Leftrightarrow6x-2+7⋮3x-1\)

=>3x-1 thuộc Ư(7)

mà x là số tự nhiên

nên 3x-1 thuộc {-1}

=>x=0

d: x^2+7 chia hết cho 2x^2+1

=>2x^2+14 chia hết cho 2x^2+1

=>2x^2+1+13 chia hết cho 2x^2+1

=>2x^2+1 thuộc Ư(13)

=>2x^2+1=1(Vì x là số tự nhiên)

=>x=0

10 tháng 8 2023

What, e mới lớp 6 mà căn bậc gì đây rồii

 

2 tháng 2 2021

                  khocroi khocroiai gúp mình vớikhocroikhocroi

2 tháng 2 2021

                                  HELP ME

NM
14 tháng 12 2020

1. Hợp số có ước khác 1 và chính nó.

2.số nguyên tố là số chỉ có ước là 1 và chính nó 

3.hợp số lẻ nhỏ nhất là 9.

4.số nguyên tố chẵn duy nhất là 2.

5. có 25 số nguyên tố nhỏ hơn 100

6.kiểm tra xem ước của nó là gì.

7. ta có 30=2.3.5 mà ước lớn hơn 5 nên chỉ có 6,10,15 và 30 là ước thỏa mãn

8.bội của 1 là tập số tự nhiên

9 ước của 1 là chính nó

10. 0 và 1 không là số nguyên tố cũng không là hợp số

14 tháng 12 2020

1. Hợp số là số có nhiều hơn 2 ước

2. Số nguyên tố là số có 2 ước là 1 và chính nó

3. Hợp số lẻ nhỏ nhất : 9

4. Số nguyên tố chẵn duy nhất : 2

5. Có 25 số nguyên tố nhỏ hơn 100

6. Lần lượt chia số đó cho 1 ; 2 ; 3 ; .......  nếu số đó chia hết cho hơn 2 số thì số đó là hợp số, và ngược lại nếu số đó chia hết cho 2 số (1 và chính nó) thì số đó là số nguyên tố

7.  Ta có : 30 = 2 . 3 . 5 mà các ước cần tìm lớn hơn 5 => Các ước cần tìm là : 6 ; 10 ; 15 ; 30

8. B(1) = {0 ; 1 ; 2 ; 3 ; 4 ; .......} => B(1) = N

9. Ư(1) = 1

10. Số 0 và 1 không phải số nguyên tố cũng chăng phải là hợp số.