Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left\{{}\begin{matrix}R\left(x\right)=x^2+8x+6\\R\left(x\right)=0\end{matrix}\right.\)
\(\Rightarrow x^2+8x+6=0\)
\(\Rightarrow x^2+8x+16-10=0\)
\(\Rightarrow\left(x+4\right)^2-10=0\)
\(\Rightarrow\left(x+4\right)^2=10\)
\(\Rightarrow x+4=\pm\sqrt{10}\)\(\Rightarrow x=\pm\sqrt{10}-4\)
nghiệm của đa thức là -1
Tìm nghiệm bạn chỉ cần thay và thử giá trị là ra thôi. nhớ kb nhá
chúc bạn học tốt~
Tìm nghiệm
a)Ta có : P(y) = 0
\(\Rightarrow3y-6=0\)
\(\Rightarrow3y=6\)
\(\Rightarrow y=6:3\)
\(\Rightarrow y=2\)
Vậy \(y=2\) là nghiệm của đa thức P(y)
b) Ta có : \(M\left(x\right)=0\)
\(\Rightarrow x^2-4=0\)
\(\Rightarrow x^2=4\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Bài 2 : Chứng tỏ rằng đa thức sau ko có nghiệm : Q(x)=x4+1
Ta có : \(x^4\ge0\) với \(\forall x\)
\(\Rightarrow x^4+1\ge1\) với \(\forall x\)
Vậy đa thức \(Q\left(x\right)\) vô nghiệm
MuốnP(y)=3y-6 có nghiệm
Ta coi P(y)=3y-6=0
3y=6
y=3
Muốn M(x)=x.x-4 có nghiệm
Ta coi M(x)=x.x-4=0
x.x=4
x=2
Vậy nghiệm của đa thức P(y)là 3
Vậy nghiệm của đa thức M(x) là 2
Q(x)=x.x.x.x+1
vì x.x.x.x> hoặc = 0
x.x.x.x+1>0 với mọi x
Đa thức f(x)=2x^2-8x+6
Thay x=1
f(x)=2.1^2-8.1+6
=2.1-8.1+6
=2-8+6=0
Vậy x=1 là nghiệm của đa thức f(x)
Thay x=3
f(x)=2.3^2-8.3+6
=2.9-8.3+6
=18-24+6=-6+6=0
Vậy x=3 là nghiệm của đa thức f(x)
\(f\left(1\right)=2.1^2-8.1+6\)
\(f\left(1\right)=2-8+6\)
\(f\left(1\right)=0\)
Vậy x = 1 là nghiệm f(x)
\(f\left(3\right)=2.3^2-8.3+6\)
\(f\left(3\right)=18-24+6\)
\(f\left(3\right)=0\)
Vậy x = 3 là nghiệm f(x)
\(f\left(x\right)=x^2-5x+4\)
\(=x^2-x-4x+4\)
\(=x\left(x-1\right)-4\left(x-1\right)\)
\(=\left(x-4\right)\left(x-1\right)=0\)
\(\Rightarrow x=4\)hoặc \(x=1\)
Vậy nghiệm của đa thức f(x) là x=4 hoặc x=1
ta có: H(x) = 5x^3 + 2 + 8x^2 - 8x^3 - 5x^2 - 6 - 3x^2
H(x) = - ( 8x^3 - 5x^3) + ( 8x^2 - 5x^2 - 3x^2 ) - ( 6-2)
H(x) = - 3 x^3 - 4
Cho H(x) = 0
=> - 3 x^3 - 4 = 0
-3x^3 = 4
x ^3 = -4/3
H(x) = 5x3 +2+8x2-8x3-5x2-6-3x2
H(x) = ( 5x3 - 8x3 ) + ( 8x2 - 5x2 - 3x2 ) + ( 2 - 6 )
H(x) = -3x3 - 4
Để H(x) có nghiệm thì -3x3 - 4 = 0
\(\Rightarrow\)x3 = \(\frac{4}{-3}\)\(\Rightarrow\)x = \(\sqrt[3]{\frac{4}{-3}}\)
2\(x^3\) - 8\(x^2\) + 9\(x\) = 0
\(x\)(2\(x^2\) - 8\(x\) + 9) = 0
\(\left[{}\begin{matrix}x=0\\2x^2-8x+9=0\end{matrix}\right.\)
2\(x^2\) - 8\(x\) + 9 = 0
2\(x^2\) - 4\(x\) - 4\(x\) + 8 + 1 = 0
(2\(x^2\) - 4\(x\)) - (4\(x\) - 8) + 1 = 0
2\(x\)(\(x-2\)) - 4(\(x-2\)) + 1 = 0
2(\(x-2\))(\(x\) - 2) + 1 = 0
2(\(x-2\))2 + 1 = 0 (vô lí) vì (\(x\) - 2)2 ≥ 0 \(\forall\)\(x\) ⇒ 2.(\(x-2\))2 +1 ≥ 1 > 0
Vậy 2\(x^3\) - 8\(x^2\) + 9\(x\) = 0 có nhiều nhất 1 nghiệm và đó là \(x\) = 0
mk bít có bn nghiệm rồi mk muốn pít cách giải để tìm ra các nghiệm
bài này thường mà, làm tắt thôi, tự trình bày lại
\(R\left(x\right)=x^2+8x+6=\left(x^2+8x+16\right)-10=\left(x+4\right)^2-10=0\)
<=> (x+4)2=10 <=> \(\orbr{\begin{cases}x+4=-\sqrt{10}\\x+4=\sqrt{10}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\sqrt{10}-4\\x=\sqrt{10}-4\end{cases}}\)
Tra thử Câu hỏi tương tự và thay số vào xem được không
Không đươc thì tra Google
không được nữa thì hỏi thầy cô
Không được nữa thì bỏ đê