Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x}=3\Rightarrow x=9\)
\(\sqrt{x}=\sqrt{5}\Rightarrow x=5\)
\(\sqrt{x}=0\Rightarrow x=0\)
\(\sqrt{x}=-2\Rightarrow x=\varnothing\)
a)\(\sqrt{x}=3\Rightarrow x=9\)
b)\(\sqrt{x}=\sqrt{5}\Rightarrow x=5\)
c)\(\sqrt{x}=0\Rightarrow x=0\)
d)\(\sqrt{x}=-2\Rightarrow x=4\)
a: \(=1-\left(\sqrt{x}\right)^3=1-x\sqrt{x}\)
b: \(=\left(\sqrt{x}\right)^3+2^3=x\sqrt{x}+8\)
c: \(=\left(\sqrt{x}\right)^3-\left(\sqrt{y}\right)^3=x\sqrt{x}-y\sqrt{y}\)
d: \(=x^3+\left(\sqrt{y}\right)^3=x^3+y\sqrt{y}\)
a) \(\sqrt{2}x-\sqrt{50}=0\)
\(\Leftrightarrow\sqrt{2}x=\sqrt{50}\)
\(\Leftrightarrow x=\frac{\sqrt{50}}{\sqrt{2}}=\sqrt{\frac{50}{2}}=\sqrt{25}=5\)
b) \(\sqrt{3}x+\sqrt{3}=\sqrt{12}+\sqrt{27}\)
\(\Leftrightarrow\sqrt{3}\left(x+1\right)=2\sqrt{3}+3\sqrt{3}\)
\(\Leftrightarrow\sqrt{3}x=5\sqrt{3}\)
\(\Leftrightarrow x=5\)
c) \(\sqrt{3}x^2-\sqrt{12}=0\)
\(\Leftrightarrow\sqrt{3}\left(x^2-2\right)=0\)
\(\Leftrightarrow x^2-2=0\)
\(\Leftrightarrow x^2=2\Leftrightarrow\left[\begin{array}{nghiempt}x=\sqrt{2}\\x=-\sqrt{2}\end{array}\right.\)
d) \(\frac{x^2}{\sqrt{5}}-\sqrt{20}=0\)
\(\Leftrightarrow\)\(\frac{1}{\sqrt{5}}\left(x^2-10\right)=0\)
\(\Leftrightarrow x^2-10=0\)
\(\Leftrightarrow x^2=10\Leftrightarrow\left[\begin{array}{nghiempt}x=\sqrt{10}\\x=-\sqrt{10}\end{array}\right.\)
Với câu c, Thiên Anh nên thêm điều kiện để phần kết luận là: \(0\le x< 2.\)
Ta có : \(\sqrt{3}.x-\sqrt{75}=0\)
\(\Leftrightarrow\sqrt{3}.x-5\sqrt{3}=0\)
\(\Leftrightarrow\sqrt{3}\left(x-5\right)=0\)
Vì \(\sqrt{3}\ne0\)
Nên : x - 5 = 0
Vậy x = 5.
b) Ta có : \(\sqrt{2}.x+\sqrt{2}=\sqrt{8}+\sqrt{32}\)
\(\Leftrightarrow\sqrt{2}\left(x+1\right)=6\sqrt{2}\)
\(\Leftrightarrow\sqrt{2}\left(x+1\right)-6\sqrt{2}=0\)
\(\Leftrightarrow\sqrt{2}.\left(x+1-6\right)=0\)
\(\Leftrightarrow\sqrt{2}.\left(x-5\right)=0\)
Vì \(\sqrt{2}\ne0\)
Nên x - 5 = 0
Suy ra : x = 5
\(\sqrt{9}=3\)
\(\sqrt{25=3}\)
\(\sqrt{0}=0\)
\(-\sqrt{4}\)
a, \(\sqrt{x}\)=3 ( đkxđ : \(x\ge0\))
<=> \(\left(\sqrt{x}\right)^{^{ }2}\)= \(^{3^2}\)
<=> x = 9
b, \(\sqrt{x}\)= \(\sqrt{5}\) ( đkxđ : \(x\ge0\))
<=> \(\left(\sqrt{x}\right)^2=\left(\sqrt{5}\right)^2\)
<=> x = 5
c, \(\sqrt{x}=0\) ( đkxđ : \(x\ge0\))
<=> \(\left(\sqrt{x}\right)^2=0^2\)
<=> x = 0
d, \(\sqrt{x}=-2\) ( đkxđ : \(x\ge0\))
vô nghiệm
Vậy k có giá trị nào của x ( tm đkxđ)