Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(y=f\left(x\right)=\left(-1\right)^2-1-2=-2\)
.\(y=f\left(10\right)=10^2+10-2=108\)
\(y=f\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^2+\frac{1}{2}-2=\frac{-5}{4}\)
\(y=f\left(2\right)=2^2+2-2=4\)
b.Có \(f\left(x\right)=0\)
\(\Rightarrow x^2+x-2=0\)
\(x^2+2x-x-2=0\)
\(\left(x^2-x\right)+\left(2x-2\right)=0\)
\(x\left(x-1\right)+2\left(x-1\right)=0\)
\(\left(x-1\right)\left(x+2\right)=0\)
\(\cdot TH1.x-1=0\Rightarrow x=1\)
\(\cdot TH2.x+2=0\Rightarrow x=-2\)
a) \(\left(\frac{2}{3}x-\frac{4}{9}\right)\left(\frac{1}{2}-\frac{3}{7}:x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\frac{2}{3}x-\frac{4}{9}=0\\\frac{1}{2}-\frac{3}{7}:x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{6}{7}\end{cases}}\)
Vậy \(x\in\left\{\frac{2}{3};\frac{6}{7}\right\}\)
b)
\(\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+5}{324}+\frac{x+349}{5}=0\)
\(\frac{x+2}{327}+1+\frac{x+3}{326}+1+\frac{x+4}{325}+1+\frac{x+5}{324}+1+\frac{x+329}{5}+4=4\)
\(\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=0\)
\(\left(x+329\right)\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)=0\)
Mà \(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\ne0\)
\(\Rightarrow x+329=0\)
\(\Rightarrow x=-329\)
Vậy \(x=-329\)
a) \(\left(x+1\right)\left(x-2\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}}\)hoặc \(\hept{\begin{cases}x< -1\\x>2\end{cases}\left(Loai\right)}\)
\(\Leftrightarrow-1< x< 2\)
b) \(\left(x-2\right)\left(x+\frac{1}{2}\right)>0\)
\(\Leftrightarrow\hept{\begin{cases}x-2>0\\x+\frac{1}{2}>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-2< 0\\x+\frac{1}{2}< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>2\\x>\frac{-1}{2}\end{cases}}\)hoặc \(\hept{\begin{cases}x< 2\\x< \frac{-1}{2}\end{cases}}\)
\(\Leftrightarrow x>2\)hoặc \(x< \frac{-1}{2}\)
Vậy \(\orbr{\begin{cases}x>2\\x< \frac{-1}{2}\end{cases}}\)
a, \(\left(x+1\right)\left(x-2\right)< 0\)
\(\Rightarrow\text{ }\left(x+1\right)\text{ và }\left(x-2\right)\text{ trái dấu}\)
Mà \(x+1>x-2\)
\(\Rightarrow\text{ }\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\) \(\Rightarrow\text{ }\hept{\begin{cases}x>-1\\x< 2\end{cases}}\) \(\Rightarrow\text{ }-1< x< 2\)
\(\Rightarrow\text{ }x\in\left\{0\text{ ; }1\right\}\)
b, \(\left(x-2\right)\left(x+\frac{1}{2}\right)>0\)
\(\Rightarrow\hept{\begin{cases}x-2>0\\x+\frac{1}{2}>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-2< 0\\x+\frac{1}{2}< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x>2\\x>-\frac{1}{2}\end{cases}}\) hoặc \(\hept{\begin{cases}x< 2\\x< -\frac{1}{2}\end{cases}}\)
\(x>2\) hoặc \(x< -\frac{1}{2}\)
a) \(\frac{2}{3}+\frac{1}{3}:x=\frac{3}{5}\)
\(\frac{1}{3}:x=\frac{-1}{15}\)
\(x=-5\)
vậy ...
\(a,\frac{2}{3}+\frac{1}{3}:x=\frac{3}{5}\)
\(\frac{1}{3}:x=\frac{3}{5}-\frac{2}{3}\)
\(\frac{1}{3}:x=-\frac{1}{15}\)
\(x=\frac{1}{3}:\left(-\frac{1}{15}\right)\)
\(x=-5\)
câu b e chưa nghĩ ra =.=
a) \(\left(x+1\right)\left(x-2\right)< 0\)
\(\Leftrightarrow\begin{cases}x+1>0\\x-2< 0\end{cases}\) hoặc \(\begin{cases}x+1< 0\\x-2>0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>-1\\x< 2\end{cases}\) hoặc \(\begin{cases}x< -1\\x>2\end{cases}\) (loại)
\(\Leftrightarrow-1< x< 2\)
b) \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
\(\Leftrightarrow\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}\) hoặc \(\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>2\\x>-\frac{2}{3}\end{cases}\) hoặc \(\begin{cases}x< 2\\x< -\frac{2}{3}\end{cases}\)
\(\Leftrightarrow x>2\) hoạc \(x< -\frac{2}{3}\)
a, => (-2)^x = -(2^2)^6.(2^3)^15
=> (-2)^x = -2^12.2^15 = -2^27 = (-2)^27
=> x = 27
b, Vì |x+5| và (3y-4)^2012 đều >= 0
=> |x+5|+(3y-4)^2012 >= 0
Dấu "=" xảy ra <=> x+5=0 và 3y-4=0 <=> x=-5 và y=4/3
c, => (2x-1)^2+|2y-x| = 12-5.2^2+8 = 0
Vì (2x-1)^2 và |2y-x| đều >= 0
=> (2x-1)^2+|2y-x| >= 0
Dấu "=" xảy ra <=> 2x-1=0 và 2y-x=0 <=> x=1/2 và y=1/4
Tk mk nha
\(P=\frac{0,75-0,6+\frac{3}{7}+\frac{3}{13}}{2,75-2,2+\frac{11}{7}+\frac{11}{13}}\)
\(\Rightarrow P=\frac{\frac{3}{4}-\frac{3}{5}+\frac{3}{7}+\frac{3}{13}}{\frac{11}{4}-\frac{11}{5}+\frac{11}{7}+\frac{11}{13}}\)
\(\Rightarrow P=\frac{3\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}+\frac{1}{13}\right)}{11\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}+\frac{1}{13}\right)}\)
\(\Rightarrow P=\frac{3}{11}\)
Vậy \(P=\frac{3}{11}\)
Bài 1:
\(P=\frac{0,75-0,6+\frac{3}{7}+\frac{3}{13}}{2,75-2,2+\frac{1}{7}+\frac{11}{13}}\)
\(=\frac{\frac{3}{4}-\frac{3}{5}+\frac{3}{7}+\frac{3}{13}}{\frac{11}{4}-\frac{11}{5}+\frac{11}{7}-\frac{11}{3}}\)
\(=\frac{3.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}-\frac{1}{13}\right)}{11.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}-\frac{1}{13}\right)}=\frac{3}{11}\)
Bài 2:
a) \(\left(x+1\right)\left(x-2\right)< 0\Leftrightarrow\orbr{\begin{cases}\left(x+1\right)=0\left(\text{loại}\right)\\\left(x-2\right)=0\end{cases}}\Rightarrow x=2\)
a/ Ta luôn có : \(\begin{cases}x^2\ge0\\\left(y-\frac{1}{10}\right)^4\ge0\end{cases}\)\(\Rightarrow x^2+\left(y-\frac{1}{10}\right)^4\ge0\)
Để dấu "=" xảy ra thì x = 0 , y = 1/10
b/ Tương tự.
a) Ta có : ( x + 1 ).( 3 - x ) > 0
Th1 : \(\hept{\begin{cases}x+1>0\\3-x>0\end{cases}\Rightarrow\hept{\begin{cases}x>-1\\x>3\end{cases}\Rightarrow}x>3}\)
Th2 : \(\hept{\begin{cases}x+1< 0\\3-x< 0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x< 3\end{cases}\Rightarrow}x< -1}\)
a) Để (x + 1)(x - 2) < 0 thì ta có 2 trường hợp
Th1 : (x + 1) < 0 ; (x - 2) > 0 => x < -1 ; x > 2 (vô lí)
Th2 : (x + 1) > 0 ; (x - 2) < 0 => x > -1 ; x < 2 => -1 < x < 2
Vậy x thuộc {0;1}
b) Để \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\) thì sảy ra 2 trường hợp
Th1 : (x - 2) > 0 ; \(\left(x+\frac{2}{3}\right)>0\) => x > 2 ; \(x>-\frac{2}{3}\) => x > 2
Th2 : (x - 2) < 0 ; \(\left(x+\frac{2}{3}\right)< 0\) => x < 2 ; \(x< -\frac{2}{3}\) => \(x< -\frac{2}{3}\)
Vậy ...........................
a, (x+1)(x-2)<0
th1 (x+1)>0 x>-1
(x-2)<0 => x<2
=> -1<x<2
TH2
(x+1)<0
(x-2)>0
ko xảy ra vì với mọi x nếu x-2>0=>x+1>0