Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 10:
a: 2x-3 là bội của x+1
=>\(2x-3⋮x+1\)
=>\(2x+2-5⋮x+1\)
=>\(-5⋮x+1\)
=>\(x+1\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{0;-2;4;-6\right\}\)
b: x-2 là ước của 3x-2
=>\(3x-2⋮x-2\)
=>\(3x-6+4⋮x-2\)
=>\(4⋮x-2\)
=>\(x-2\inƯ\left(4\right)\)
=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{3;1;4;0;6;-2\right\}\)
Bài 14:
a: \(4n-5⋮2n-1\)
=>\(4n-2-3⋮2n-1\)
=>\(-3⋮2n-1\)
=>\(2n-1\inƯ\left(-3\right)\)
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
=>\(2n\in\left\{2;0;4;-2\right\}\)
=>\(n\in\left\{1;0;2;-1\right\}\)
mà n>=0
nên \(n\in\left\{1;0;2\right\}\)
b: \(n^2+3n+1⋮n+1\)
=>\(n^2+n+2n+2-1⋮n+1\)
=>\(n\left(n+1\right)+2\left(n+1\right)-1⋮n+1\)
=>\(-1⋮n+1\)
=>\(n+1\in\left\{1;-1\right\}\)
=>\(n\in\left\{0;-2\right\}\)
mà n là số tự nhiên
nên n=0
a) \(\left(2\dfrac{3}{4}-1\dfrac{4}{5}\right)\cdot x=1\)
\(\left(\dfrac{11}{4}-\dfrac{9}{5}\right)\cdot x=1\)
\(\dfrac{19}{20}x=1\)
\(x=\dfrac{20}{19}\)
Vậy \(x=\dfrac{20}{19}\)
b) \(\left(x^2-9\right)\left(3-5x\right)=0\)
TH1:
\(x^2-9=0\)
\(x^2=9\)
\(x^2=3^2=\left(-3\right)^2\)
=>\(x\in\left\{3;-3\right\}\)
TH2:
\(3-5x=0\)
\(5x=3\)
\(x=\dfrac{3}{5}\)
Vậy \(x\in\left\{3;-3;\dfrac{3}{5}\right\}\)
`a)(4,5-2x)*1 4/7=11/14`
`=>(4,5-2x)*11/7=11/14`
`=>4,5-2x=1/2`
`=>2x=4,5-0,5=4`
`=>x=2`
Vậy `x=2`
`b)(2,8x-32):2/3=-90`
`=>2,8x-32=-90*2/3=-60`
`=>2,8x=-28`
`=>x=-10`
Vậy `x=-10`
a)
\(\begin{array}{l}\left( {9x - {2^3}} \right):5 = 2\\9x - {2^3} = 2.5\\9x - 8 = 10\\9x = 18\\x = 2\end{array}\)
Vậy \(x = 2\)
b)
\(\begin{array}{l}\left[ {{3^4} - \left( {{8^2} + 14} \right):13} \right]x = {5^3} + {10^2}\\\left[ {81 - \left( {64 + 14} \right):13} \right]x = 125 + 100\\\left[ {81 - 78:13} \right]x = 125 + 100\\\left[ {81 - 6} \right]x = 225\\75x = 225\\x = 3\end{array}\)
Vậy \(x = 3\)
a) \(\dfrac{32}{\left(-2\right)^n}=4\)
\(\Rightarrow\left(-2\right)^n=8=\left(-2\right)^3\)
=> n = 3
b) \(\dfrac{8}{2^n}=2\)
\(\Rightarrow2^n=4=2^2\)
=> n = 2
c) \(\left(\dfrac{1}{2}\right)^{2n-1}=\dfrac{1}{8}\)
\(\Rightarrow\left(\dfrac{1}{2}\right)^{2n-1}=\left(\dfrac{1}{2}\right)^3\)
=> 2n - 1 = 3
=> 2n = 4
=> n = 2
\(\left(-2\right)^3=-8\) bạn ạ chứ không phải là bằng 8 nên n = 3 là không đúng rồi
\(a,3x-31=-40\Rightarrow3x=-9\Rightarrow x=-3\)
\(b,-3x+37=\left(-4\right)^2\Rightarrow-3x=-21\Rightarrow x=7\)
\(c,\left|2x+7\right|=5\)
\(\Rightarrow\left\{{}\begin{matrix}2x+7=5\Rightarrow x=-1\\2x+7=-5\Rightarrow x=-6\end{matrix}\right.\)
\(d,-x+21=15+2x\Rightarrow3x=6\Rightarrow x=2\)
a) Ta có: 3x-31=-40
\(\Leftrightarrow3x=-9\)
hay x=-3
Vậy: x=-3
b) Ta có: \(-3x+37=\left(-4\right)^2\)
\(\Leftrightarrow-3x+37=16\)
\(\Leftrightarrow-3x=16-37=-21\)
hay x=7
Vậy: x=7
a: x^2=16
=>x=4 hoặc x=-4
b: =>x^2=144
=>x=12 hoặc x=-12
a)x^2 =16
x =4^2
b)x^2+(-4) = 140
x^2 = 140-(-4)
x^2 = 144
x^2 =12^2
a: \(\Leftrightarrow2x+\dfrac{7}{2}=\dfrac{16}{3}:\dfrac{8}{3}=2\)
=>2x=-3/2
hay x=-3/4
b: 2x+3=5
=>2x=2
hay x=1
c: =>3(x-2)=4(5+x)
=>4x+20=3x-6
=>x=-26
a, 3x - 5 = 16...............
=> 3x = 16 + 5 = 21..................
=> x = 21 : 3 = 7..........
\(b,42-2\left(32-2^{x+1}\right)=10\)
\(\Rightarrow2\left(32-2^{x+1}\right)=42-10=32\)
\(\Rightarrow32-2^{x+1}=32:2=16\)
\(\Rightarrow2^{x+1}=32-16=16=2^4\)
\(\Rightarrow x+1=4\)
\(\Rightarrow x=4-1=3\)