\(\in\) z, biết 2018 +|2018-x|=x và \(\le\) 2020
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2022

2018+|2018-x|=x

=>|x-2018|=x-2018

=>x-2018>=0

=>x>=2018

mà x<=2020

nên \(x\in\left\{2018;2019;2020\right\}\)

23 tháng 12 2018

Chị giải hộ cho e bài toán của em dc khmột chút thôinhe

23 tháng 12 2018

câu hỏi j ạ

26 tháng 12 2018

Bài 1 :

Vì \(\sqrt{3x+2y+z}\ge0\forall x;y;z\)

\(\left|y-\frac{1}{2}\right|\ge0\forall y\)

\(\left(z-2\right)^2\ge0\forall z\)

\(\Rightarrow A\ge2018\forall x;y;z\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}3x+2y+z=0\\y-\frac{1}{2}=0\\z-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x+2\cdot\frac{1}{2}+2=0\\y=\frac{1}{2}\\z=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=\frac{1}{2}\\z=2\end{cases}}}\)

Vậy........

26 tháng 12 2018

Bài 2 :

Lý luận tương tự câu 1) ta có :

\(\hept{\begin{cases}x-1=0\\y+1=0\\x+y+z=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\\1-1+z=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=-1\\z=0\end{cases}}}\)

Thay x; y; z vào P ta có :

\(P=1^{2018}+\left(-1\right)^{2019}+0^{2020}\)

\(P=1-1+0\)

\(P=0\)

6 tháng 12 2019

a) 2009 - |x - 2009| = x

 => |x - 2009| = 2009 - x (1)

ĐK : \(2009-x\ge0\Leftrightarrow x\le2009\)

Ta có (1) <=> \(\orbr{\begin{cases}x-2009=2009\\x-2009=-2009\end{cases}\Rightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=2009\left(\text{loại}\right)\end{cases}}}\)

Vậy x = 0

b) Ta có : \(\hept{\begin{cases}\left(2x-1\right)^{2018}\ge0\forall x\\\left(y-\frac{2}{5}\right)^{2020}\ge0\forall y\\\left|x+y-z\right|\ge0\forall x;y;z\end{cases}}\Rightarrow\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2020}+\left|x+y-z\right|\ge0\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y-z=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=x+y\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{9}{10}\end{cases}}}\)

22 tháng 12 2019

\(\text{b)}\)

\(\text{Ta có: }\text{ }\left(2x-1\right)^{2018}\ge0\)

             \(\left(y-\frac{2}{5}\right)^{2020}\ge0\)

        \(\text{ và}\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)=0\)

\(\text{Dấu "=" xảy ra khi:}\)   

     \(\left(2x-1\right)^{2018}=0\) 

\(\Rightarrow2x-1\)         \(=0\)

\(\Rightarrow2x\)                  \(=1\)

\(\Rightarrow x\)                     \(=\frac{1}{2}\)

\(\text{ và:}\left(y-\frac{2}{5}\right)^{2020}=0\)

\(\Rightarrow y-\frac{2}{5}\)          \(=0\)

\(\Rightarrow y\)                      \(=\frac{2}{5}\)

\(\text{Nhớ k cho mình với nghe}\)     :33

24 tháng 12 2018

*Nếu \(x\le2018\)ta đc

\(2018+2018-x=x\)

\(\Leftrightarrow2x=2.2018\)

\(\Leftrightarrow x=2018\)(Thỏa mãn khoảng đag xét )

*Nếu \(2018< x\le2020\)ta đc

\(2018+x-2018=x\)

\(\Leftrightarrow x=x\)                                 

Ta luôn tìm đc x trong khoảng \(2018< x\le2020\)

Mà \(x\inℤ\Rightarrow x\in\left\{2019;2020\right\}\)

Vậy \(x\in\left\{2018;2019;2020\right\}\)

30 tháng 12 2017

đk(x,y,z khác 0)

Áp dụng dãy tỉ số = nhau , ta có 

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{z+x+y}=1\Rightarrow x=y=z\)

thay vào giả thiết kia, ta có 

\(x^{2017}-x^{2018}=0\Leftrightarrow x^{2017}\left(1-x\right)=0\Leftrightarrow x=1\) (vì x khác 0)

=>x=y=z=1

8 tháng 1 2018

bn làm đúng rồi đó!

3 tháng 1 2019

Vì \(\left(x-2\right)^{2018}\ge0vs\forall x\) và \(\left(2y-1\right)^{2004}\ge0vs\forall y\)

\(\Rightarrow\left(x-2\right)^{2018}+\left(2y-1\right)^{2004}\ge0\)

Mà \(\left(x-2\right)^{2018}+\left(2y-1\right)^{2004}\le0\)     ( theo bài ra )

Suy ra : \(\left(x-2\right)^{2018}+\left(2y-1\right)^{2004}=0\)

\(\Rightarrow\hept{\begin{cases}\left(x-2\right)^{2018}=0\\\left(2y-1\right)^{2004}=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x-2=0\\2y-1=0\end{cases}}\)      \(\Rightarrow\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}\)

Vậy \(x=2;y=\frac{1}{2}\)

5 tháng 11 2019

Sửa đề: \(\left|3x-5\right|+(2y+5)^{2018}+\left(4z-3\right)^{2020}\le0\)(1)

Ta có: \(\left|3x-5\right|\ge0;\left(2y+5\right)^{2018}\ge0;\left(4z-3\right)^{2020}\ge0.\)mọi x,y, z.

=> \(\left|3x-5\right|+(2y+5)^{2018}+\left(4z-3\right)^{2020}\ge0\)với mọi x, y,z.

Như vậy (1) chỉ xảy ra trường hợp: \(\left|3x-5\right|+(2y+5)^{2018}+\left(4z-3\right)^{2020}=0\)

<=> \(\hept{\begin{cases}3x-5=0\\2y+5=0\\4z-3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{5}{2}\\z=\frac{3}{4}\end{cases}}\)

Vậy...

5 tháng 11 2019

thầy mình cho đè kia cơ