K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2017

undefined

22 tháng 4 2017

Ta có: \(\left|\dfrac{1}{4}+x\right|=\dfrac{5}{6}\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{4}+x=\dfrac{5}{6}\\\dfrac{1}{4}+x=\dfrac{-5}{6}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{6}-\dfrac{1}{4}\\x=\dfrac{-5}{6}-\dfrac{1}{4}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{10}{12}-\dfrac{3}{12}\\x=\dfrac{-10}{12}-\dfrac{3}{12}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{12}\\x=\dfrac{-13}{12}\end{matrix}\right.\)

Vậy \(x=\dfrac{7}{12}\) hoặc \(x=-\dfrac{13}{12}\)

25 tháng 8 2023

a) \(\dfrac{x-4}{15}=\dfrac{5}{3}\)

\(\Leftrightarrow x-4=15.\dfrac{5}{3}\)

\(\Leftrightarrow x-4=25\)

\(\Leftrightarrow x=29\) thỏa \(x\inℤ\)

b) \(\dfrac{x}{4}=\dfrac{18}{x+1}\left(x\ne-1\right)\)

\(\Leftrightarrow x\left(x+1\right)=18.4\)

\(\Leftrightarrow x\left(x+1\right)=72\)

vì \(72=8.9=\left(-8\right).\left(-9\right)\)

\(\Leftrightarrow x\in\left\{8;-9\right\}\left(x\inℤ\right)\)

c) \(2x+3⋮x+4\) \(\left(x\ne-4;x\inℤ\right)\)

\(\Leftrightarrow2x+3-2\left(x+4\right)⋮x+4\)

\(\Leftrightarrow2x+3-2x-8⋮x+4\)

\(\Leftrightarrow-5⋮x+4\)

\(\Leftrightarrow x+4\in\left\{-1;1;-5;5\right\}\)

\(\Leftrightarrow x\in\left\{-5;-3;-9;1\right\}\)

\(\Leftrightarrow\left(19.75\right):x=\left(\dfrac{33}{5}-\dfrac{51}{16}\right)\cdot\dfrac{35}{6}:\dfrac{5}{2}\)

\(\Leftrightarrow19.75:x=\dfrac{637}{80}\)

hay x=1580/637

24 tháng 8 2023

Hỏi rồi àm sao hỏi lại vậy

24 tháng 8 2023

\(\left(x-\dfrac{1}{5}\right):\left(x-1\dfrac{6}{7}\right)< 0\)

\(\Rightarrow\left(x-\dfrac{1}{5}\right):\left(x-\dfrac{13}{7}\right)< 0\)

\(TH1:\left\{{}\begin{matrix}x-\dfrac{1}{5}>0\\x-\dfrac{13}{7}< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{1}{5}\\x< \dfrac{13}{7}\end{matrix}\right.\) \(\Leftrightarrow\dfrac{1}{5}< x< \dfrac{13}{7}\)

 

\(TH2:\left\{{}\begin{matrix}x-\dfrac{1}{5}< 0\\x-\dfrac{13}{7}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x< \dfrac{1}{5}\\x>\dfrac{13}{7}\end{matrix}\right.\) (vô lý nên loại)

Vậy \(\dfrac{1}{5}< x< \dfrac{13}{7}\) thỏa mãn đề bài

\(\Leftrightarrow\left(\dfrac{13}{4}-x\right)\cdot\dfrac{101}{25}-\dfrac{1213}{100}=2\cdot\left[\left(x-\dfrac{10}{7}\right)\cdot\dfrac{49}{50}+\dfrac{2}{5}\right]\)

\(\Leftrightarrow\left(\dfrac{13}{4}-x\right)\cdot\dfrac{101}{25}=\dfrac{49}{25}\left(x-\dfrac{10}{7}\right)+\dfrac{4}{5}+\dfrac{1213}{100}\)

\(\Leftrightarrow\dfrac{1313}{100}-\dfrac{101}{25}x=\dfrac{49}{25}x-\dfrac{490}{175}+\dfrac{1293}{100}\)

=>-6x=13/5

hay x=-13/30

18 tháng 9 2021

1) \(\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\)

\(\Leftrightarrow\dfrac{11}{12}-\dfrac{2}{5}-x=\dfrac{2}{3}\)

\(\Leftrightarrow x=\dfrac{11}{12}-\dfrac{2}{5}-\dfrac{2}{3}\)

\(\Leftrightarrow x=-\dfrac{3}{20}\)

2) \(2x\left(x-\dfrac{1}{7}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x-\dfrac{1}{7}=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{7}\end{matrix}\right.\)

3) \(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\)

\(\Leftrightarrow\dfrac{1}{4x}=\dfrac{2}{5}-\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{1}{4x}=-\dfrac{7}{20}\)

\(\Leftrightarrow4x=-\dfrac{20}{7}\)

\(\Leftrightarrow x=-\dfrac{5}{7}\)

1 tháng 12 2017

\(a,\dfrac{x-1}{x+5}=\dfrac{6}{7}\\ \Leftrightarrow\left(x-1\right).7=6\left(x+5\right)\\ \Rightarrow7x-7=6x+30\\ \Rightarrow7x-6x=7+30\\ \Rightarrow x=37\)

Vậy \(x=37\)

\(b,\dfrac{x^2}{6}=\dfrac{24}{25}\\ \Leftrightarrow x^2.25=24.6\\ \Rightarrow x^2.5^2=144\\ \Rightarrow\left(5x\right)^2=144\\ \Rightarrow\left(5x\right)^2=\left(\pm12\right)^2\\ \Rightarrow\left\{{}\begin{matrix}5x=12\\5x=-12\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{12}{5}\\x=-\dfrac{12}{5}\end{matrix}\right.\)

Vậy \(x=\pm\dfrac{12}{5}\)

23 tháng 9 2023

a, -4\(\dfrac{3}{5}\).2\(\dfrac{4}{3}\) < \(x\) < -2\(\dfrac{3}{5}\): 1\(\dfrac{6}{15}\)

  - \(\dfrac{23}{5}\).\(\dfrac{10}{3}\) <   \(x\)   < - \(\dfrac{13}{5}\)\(\dfrac{21}{15}\)

   -  \(\dfrac{46}{3}\)     <  \(x\) < - \(\dfrac{13}{7}\) 

          \(x\) \(\in\) {-15; -14;-13;..; -2}

 

 

 

 

23 tháng 9 2023

a) Ta có \(-4\dfrac{3}{5}\cdot2\dfrac{4}{3}=-\dfrac{23}{5}\cdot\dfrac{10}{3}=-\dfrac{46}{3}\) và \(-2\dfrac{3}{5}\div1\dfrac{6}{15}=-\dfrac{13}{5}\div\dfrac{7}{5}=-\dfrac{13}{7}\)

Do đó \(-\dfrac{46}{3}< x< -\dfrac{13}{7}\)

Lại có \(-\dfrac{46}{3}\le-15\) và \(-\dfrac{13}{7}\ge-2\)

Suy ra \(-15\le x\le-2\), x ϵ Z

b) Ta có \(-4\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{6}\right)=-\dfrac{13}{3}\cdot\dfrac{1}{3}=-\dfrac{13}{9}\) và \(-\dfrac{2}{3}\left(\dfrac{1}{3}-\dfrac{1}{2}-\dfrac{3}{4}\right)=-\dfrac{2}{3}\cdot\dfrac{-11}{12}=\dfrac{11}{18}\)

Do đó \(-\dfrac{13}{9}< x< \dfrac{11}{18}\)

Lại có \(-\dfrac{13}{9}\le-1\) và \(\dfrac{11}{18}\ge0\)

Suy ra \(-1\le x\le0\), x ϵ Z

20 tháng 12 2017

a/ \(\dfrac{x-1}{5}=\dfrac{1-2x}{3}\)

\(\Leftrightarrow3\left(x-1\right)=5\left(1-2x\right)\)

\(\Leftrightarrow3x-3=5-10x\)

\(\Leftrightarrow3x+10x=5+3\)

\(\Leftrightarrow13x=8\)

\(\Leftrightarrow x=\dfrac{8}{13}\)

Vậy ...

b/ \(\dfrac{3-\left|x\right|}{5}=1\dfrac{1}{2}:\dfrac{-6}{5}\)

\(\Leftrightarrow\dfrac{3-\left|x\right|}{5}=\dfrac{-5}{4}\)

\(\Leftrightarrow\left(3-\left|x\right|\right)4=5.\left(-5\right)\)

\(\Leftrightarrow\left(3-\left|x\right|\right).4=-25\)

\(\Leftrightarrow3-\left|x\right|=-6,25\)

\(\Leftrightarrow\left|x\right|=-3,25\)

\(\Leftrightarrow x\in\varnothing\)

21 tháng 12 2017

\(\dfrac{x-1}{5}=\dfrac{1-2x}{3}\Rightarrow3x-3=5-10x\)

Áp dụng tính chất chuyển quế đổi giấu

3x+10x=5+3=8

13x=8

\(\Rightarrow\dfrac{8}{13}\)

b)\(\dfrac{3-|x|}{5}=1\dfrac{1}{2}chia\dfrac{-6}{5}=\dfrac{-5}{4}\)

3-/x/=5chia\(\dfrac{-5}{4}\)=-4

/x/=-4+3=-1

Mà /x/\(\ge0\Rightarrow x\in\varnothing\)

Tick em nha

OK you. I will help

Giải

Chia mỗi hạng tử cho BCNN (3,5,2) = 30

\(\Rightarrow\)\(2\left(x-y\right)=5\left(y+x\right)=3\left(x+z\right)=\dfrac{2\left(x-y\right)}{30}=\dfrac{5\left(y+x\right)}{30}=\dfrac{3\left(x+z\right)}{30}=\dfrac{x-y}{15}=\dfrac{y+z}{6}=\dfrac{x+z}{10}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, Ta có:

\(\dfrac{x-y}{15}=\dfrac{x+z}{10}=\dfrac{x-y-x-z}{15-10}=\dfrac{y-z}{5}\left(1\right)\)

\(\dfrac{x+z}{10}=\dfrac{y+z}{6}=\dfrac{x+z-y-z}{10-6}=\dfrac{x-y}{4}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\dfrac{y-z}{5}=\dfrac{x-y}{4}\left(đpcm\right)\)

hope you understand. Remember to brainstorm before asking questions. NHEO