K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2016

x(1/2+1/6+1/12+...+1/99)=0

x=0(vì các số hang trong ngoặc đều lớn hơn 0 nên tổng của chúng lớn hơn 0)

3 tháng 8 2016

\(\frac{x}{2}\)+\(\frac{x}{6}\)+\(\frac{x}{12}\)+\(\frac{x}{20}\)+...+\(\frac{x}{99}\)=0

=> x(\(\frac{1}{2}\)+\(\frac{1}{6}\)+\(\frac{1}{12}\)+\(\frac{1}{20}\)+...+\(\frac{1}{99}\))=0

\(\frac{1}{2}\)+\(\frac{1}{6}\)+\(\frac{1}{12}\)+\(\frac{1}{20}\)+...+\(\frac{1}{99}\)\(\ne\)0

nên x =0

Vậy x=0

28 tháng 2 2020

\(\left(x-2011\right)\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\right)=\frac{16}{9}\)

\(\left(x-2011\right)\cdot\frac{2}{9}=\frac{16}{9}\)

\(x-2011=8\)

\(x=2019\)

28 tháng 2 2020

\(\frac{x-2011}{12}+\frac{x-2011}{20}+\frac{x-2011}{30}+\frac{x-2011}{42}+\frac{x-2011}{56}+\frac{x-2011}{72}=\frac{16}{9}\)

\(\left(x-2011\right)\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\right)=\frac{16}{9}\)

\(\left(x-2011\right)\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\right)=\frac{16}{9}\)

\(\left(x-2011\right)\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{8}-\frac{1}{9}\right)=\frac{16}{9}\)

\(\left(x-2011\right)\left(\frac{1}{3}-\frac{1}{9}\right)=\frac{16}{9}\)

\(\left(x-2011\right)\frac{2}{9}=\frac{16}{9}\)

\(x-2011=8\Rightarrow x=2019\)

21 tháng 3 2019

 b,\(\Rightarrow\)\(\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}\right):2=\frac{2013}{2015}:2\)

\(\Rightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2013}{4030}\)

\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}=\frac{2013}{4030}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2013}{4030}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2013}{4030}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2015}\)

\(\Rightarrow\)\(x+1=2015\)

\(\Rightarrow x=2014\)

21 tháng 3 2019

a, 2/3x -3/2.x-1/2x=5/12

    x.(2/3-3/2-1/2)=5/12

                 x. -4/3=5/12

                          x=5/12:-4/3

                          x=-5/16

b,2/6+2/12+2/20+...+2/x.(x+1)=2013/2015

   2/2.3+2/3.4+2/4.5+...+2/x.(x+1)=2013/2015

   1/2(1-1/3+1/3-1/4+1/4-1/5+...+1/x-1/x+1)=2013/2015

                                                1/2(1-1/x+1)=2013/2015

                                                 1-1/x+1=2013/2015 : 1/2

                                                  1-1/x+1=4206/2015

                                                      suy ra đề sai

                                                

                                                       

18 tháng 6 2016

phương trình này nhìn từ đầu cũng bik vô nghiệm ko có x

\(\frac{x+1}{99}+\frac{x+2}{99}=\frac{x+10}{99}+\frac{x+20}{99}\)

Nhân 2 vế cho 99 ta được:

\(99.\left(\frac{x+1}{99}+\frac{x+2}{99}\right)=99.\left(\frac{x+10}{99}+\frac{x+20}{99}\right)\)

=>x+1+x+2=x+10+x+20

=>2x+3=2x+30

=>0x=27 (vô lí)

Vậy ko tìm dc x

15 tháng 5 2016

ớ ko có vế phải seo tính đc

15 tháng 5 2016

à quên =10 chờ tí nhé

10 tháng 7 2019

a, Đề có vẻ sai sai nhé :v

b, \(\left|\frac{1}{2}x-\frac{2}{3}\right|-1=\frac{1}{6}\)

\(\Leftrightarrow\left|\frac{1}{2}x-\frac{2}{3}\right|=\frac{7}{6}\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x-\frac{2}{3}=\frac{7}{6}\\\frac{1}{2}x-\frac{2}{3}=-\frac{7}{6}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{11}{3}\\x=-1\end{cases}}\)

Vậy : ....

c, \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x(x+1)}=\frac{4}{5}\)

\(\Leftrightarrow\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+\frac{2}{4\cdot5}+...+\frac{2}{x\cdot(x+1)}=\frac{4}{5}\)

\(\Leftrightarrow2\left[\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right]=\frac{4}{5}\)

\(\Leftrightarrow2\left[\frac{1}{2}-\frac{1}{x+1}\right]=\frac{4}{5}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2}{5}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{10}\)

\(\Leftrightarrow x+1=10\Leftrightarrow x=9\)

Vậy x = 9

13 tháng 7 2019

a) x=0 nhé

6 tháng 8 2015

a, 10+15+20+....+295+x.300+x=67

10+15+20+...+295+x(300+1)=67

10+15+20+...+295+x.301=67

8845+x.301=67

67-8845=x.301

-8878=x.301

x=-29/149/301

b, 

\(\frac{1}{7.6}+\frac{1}{6.5}+\frac{1}{5.4}+\frac{1}{4.3}+\frac{1}{3.2}+\frac{1}{2.1}-\frac{1}{x+1}=\frac{59}{77}\)

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}-\frac{1}{x+1}=\frac{59}{77}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}-\frac{1}{x+1}=\frac{59}{77}\)\(1-\frac{1}{7}-\frac{1}{x+1}=\frac{59}{77}\)

\(\frac{6}{7}-\frac{1}{x+1}=\frac{59}{77}\)

\(\frac{1}{x+1}=\frac{6}{7}-\frac{59}{77}\)

\(\frac{1}{x+1}=\frac{1}{11}\)

suy ra x+1=11

suy ra x=10

 

18 tháng 5 2017

Bài 3:

a,Đặt A = \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)

A = \(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\)

2A = \(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\)

2A + A = \(\left(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\right)\)

3A = \(1-\frac{1}{2^6}\)

=> 3A < 1 

=> A < \(\frac{1}{3}\)(đpcm)

b, Đặt A = \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

3A = \(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

3A + A = \(\left(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\right)-\left(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\right)\)

4A = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

=> 4A < \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)       (1)

Đặt B = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)

3B = \(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)

3B + B = \(\left(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\right)+\left(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\right)\)

4B = \(3-\frac{1}{3^{99}}\)

=> 4B < 3

=> B < \(\frac{3}{4}\)   (2)

Từ (1) và (2) suy ra 4A < B < \(\frac{3}{4}\)=> A < \(\frac{3}{16}\)(đpcm)

18 tháng 5 2017

bài 1:

5n+7 chia hết cho 3n+2

=> [3(5n+7) - 5(3n + 2)] chia hết cho 3n+2

=> (15n + 21 - 15n - 10) chia hết cho 3n+2

=> 11 chia hết cho 3n + 2

=> 3n + 2 thuộc Ư(11) = {1;-1;11;-11}

Ta có bảng:

3n + 21-111-11
n-1/3 (loại)-1 (chọn)3 (chọn)-13/3 (loại)

Vậy n = {-1;3}

1 tháng 9 2020

a) 

\(=\frac{7\cdot7\cdot8\cdot8\cdot9\cdot9\cdot10\cdot10\cdot11\cdot11}{6\cdot8\cdot7\cdot9\cdot8\cdot10\cdot9\cdot11\cdot10\cdot12}\)    

\(=\frac{7\cdot11}{6\cdot12}\)     

\(=\frac{77}{72}\)

b) 

\(=1+\frac{1}{6}+1+\frac{1}{12}+1+\frac{1}{20}+1+\frac{1}{30}+1+\frac{1}{42}+1+\frac{1}{56}\)  

\(=6+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\)  

\(=6+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{7}-\frac{1}{8}\)  

\(=6+\frac{1}{2}-\frac{1}{8}\)  

\(=6+\frac{3}{8}\)

\(=\frac{51}{8}\)

1 tháng 9 2020

Chia thành...a và b nhé.

Bg

a)Ta có: \(\frac{49}{48}.\frac{64}{63}.\frac{81}{80}.\frac{100}{99}.\frac{121}{120}\)

\(\frac{49.64.81.100.121}{48.63.80.99.120}\)

\(\frac{7.7.8.8.9.9.10.10.11.11}{6.8.7.9.8.10.9.11.10.12}\)

\(\frac{7.11}{6.12}\)    (chịt tiêu trên dưới)

\(\frac{77}{72}\)

b) Ta có: \(\frac{7}{6}+\frac{13}{12}+\frac{21}{20}+\frac{31}{30}+\frac{43}{42}+\frac{57}{56}\)

Có 6 số hạng  (đếm)

\(1+\frac{1}{6}+1+\frac{1}{12}+1+\frac{1}{20}+1+\frac{1}{30}+1+\frac{1}{42}+1+\frac{1}{56}\)

\(1+1+...+1+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\)

\(1.6+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)

\(6+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)

\(6+\frac{1}{2}-\frac{1}{8}\)

\(\frac{13}{2}-\frac{1}{8}\)

\(\frac{51}{8}\)

Hơi dài....

8 tháng 2 2019

a) \(x^3-\frac{4}{25}x=0\)

\(\Leftrightarrow x\left(x+\frac{2}{5}\right)\left(x-\frac{2}{5}\right)=0\)

<=> x = 0

Xét 2 trường hợp: 

\(\Leftrightarrow x+\frac{2}{5}=0\)

      \(x=0-\frac{2}{5}\)

      \(x=-\frac{2}{5}\)

\(\Leftrightarrow x-\frac{2}{5}=0\)

      \(x=0+\frac{2}{5}\)

      \(x=\frac{2}{5}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=\pm\frac{2}{5}\end{cases}}\)

b) \(\left(\frac{3}{8}+\frac{-3}{4}+\frac{7}{12}\right):\frac{5}{6}+\frac{1}{2}\)

\(=\left(\frac{3}{8}+\frac{-3}{4}+\frac{7}{12}\right):\frac{4}{3}\)

\(=\frac{13}{40}:\frac{4}{3}\)

\(=\frac{39}{120}=\frac{13}{40}\)

c) \(4\left(\frac{-1}{2}\right)^3-2\left(\frac{-1}{2}\right)^2+3\left(\frac{-1}{2}\right)-1\left(\frac{-1}{2}\right)^0\)

\(=4\left(\frac{-1}{2}\right)^3-2\left(\frac{-1}{2}\right)^3+3\left(\frac{-1}{2}\right)-1.1\)

\(=-\frac{1}{2}-\frac{1}{2}-\frac{3}{2}-1.1\)

\(=-\frac{5}{2}-1\)

\(=-\frac{7}{2}\)