Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có:
\(\frac{x-1}{x+2}=\frac{4}{5}\Leftrightarrow5\left(x-1\right)=4\left(x+2\right)\)
\(\Leftrightarrow5x-5=4x+8\)
\(\Leftrightarrow5x-4x=8+5\)
\(\Leftrightarrow x=13\)
b)Ta có:
\(2^{2x+1}+4^{x+3}=2^{2x+1}+2^{2x+6}=2^{2x+1}\left(1+2^5\right)=2^{2x+1}.33=264\Leftrightarrow2^{2x+1}=8=2^3\)\(\Rightarrow2x+1=3\Leftrightarrow2x=2\Leftrightarrow x=1\)
c)Ta có:
\(\frac{x^2}{-8}=\frac{27}{x}\Leftrightarrow x^3=-8.27=-216\Leftrightarrow x=-6\)
d)Ta có:
\(\frac{x+7}{-20}=\frac{-5}{x+7}\Leftrightarrow\left(x+7\right)^2=\left(-20\right)\left(-5\right)=100\Leftrightarrow\left[{}\begin{matrix}x+7=10\\x+7=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-17\end{matrix}\right.\)e)Ta có:
\(\frac{x}{-8}=\frac{2}{-x^3}\Leftrightarrow x.\left(-x^3\right)=-8.2\)
\(\Leftrightarrow-x^4=-16\Leftrightarrow x^4=16\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
\(a.\frac{x-1}{x+2}=\frac{4}{5}\)
\(\Rightarrow\frac{x+2-3}{x+2}=\frac{4}{5}\)
\(\Rightarrow1-\frac{3}{x+2}=\frac{4}{5}\)
\(\Rightarrow\frac{3}{x+2}=1-\frac{4}{5}\)
\(\Rightarrow\frac{3}{x+2}=\frac{1}{5}\)
\(\Rightarrow\frac{3}{x+2}=\frac{3}{15}\Rightarrow x+2=15\)
\(\Rightarrow x=13\)( thỏa mãn )
Bạn tham khảo câu trả lời của anh Phan Thanh Tịnh nhé
vô phần thống kê hỏi đáp của mình để coi hình nhé
\(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\)
\(\Leftrightarrow\left(x^2-yz\right)\left(y-xyz\right)=\left(y^2-xz\right)\left(x-xyz\right)\)
\(\Leftrightarrow x^2y-x^3yz-y^2z+xy^2z^2-xy^2+xy^3z+x^2z-x^2yz^2=0\)
\(\Leftrightarrow xy\left(x-y\right)-xyz\left(x^2-y^2\right)+z\left(x^2-y^2\right)-xyz^2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left[xy-xyz\left(x+y\right)+z\left(x+y\right)-xyz^2\right]=0\)
\(\Leftrightarrow xy-xyz\left(x+y\right)+z\left(x+y\right)-xyz^2=0\left(x\ne y\Rightarrow x-y\ne0\right)\)
\(\Leftrightarrow xy+yz+xz=xyz\left(x+y\right)+xyz^2\)
\(\Leftrightarrow\frac{ay+yz+xz}{xyz}=\frac{xyz\left(x+y\right)+xyz^2}{xyz}\left(xyz\ne0\right)\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=x+y+z\)
<=> x+y+2=xy
<=> y+2=xy-x
<=> y+2=x(y-1)
<=> x= (y+2)/(y-1)=(y-1+3)/(y-1)= 1+ 3/(y-1)
Vậy, để x nguyên thì y-1 phải là ước của 3
=> y-1={-3; -1; 1; 3}
=> y={-2; 0; 2; 4}
=> x={0; -2; 4; 2}
Do x, y khác 0 nên các cặp x, y thỏa mãn là (4; 2) và (2; 4)
Bài 2:
c) \(3x-\left|2x+1\right|=2\)
\(\Rightarrow\left|2x+1\right|=3x-2\)
\(\Rightarrow\left[{}\begin{matrix}2x+1=3x-2\\2x+1=2-3x\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x-3x=\left(-2\right)-1\\2x+3x=2-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}-1x=-3\\5x=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3:1\\x=1:5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=\frac{1}{5}\end{matrix}\right.\)
Vậy \(x\in\left\{3;\frac{1}{5}\right\}.\)
Chúc bạn học tốt!
Các bạn giúp mình nhé : Bạn Vũ Minh Tuấn , Nguyễn Việt Lâm , Nguyễn Văn Đạt , Băng Băng 2k6 và thầy Akai Haruma , Phynit và tất cả các bạn khác vào giúp mình với ạ !!!
C1: Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x+2}{x+1}=\frac{x-1}{x}=\frac{x+2-\left(x-1\right)}{x+1-x}=\frac{x+2-x+1}{x+1-x}=\frac{3}{1}=3\)
Do đó: \(\frac{x-1}{x}=3\)\(\Rightarrow x-1=3x\)\(\Rightarrow x-3x=1\)\(\Rightarrow-2x=1\)\(\Rightarrow x=-\frac{1}{2}\)
C2: \(\frac{x+2}{x+1}=\frac{x-1}{x}\)
\(\Rightarrow\left(x+2\right)x=\left(x+1\right)\left(x-1\right)\)
\(\Rightarrow x^2+2x=\left(x+1\right)x-\left(x+1\right).1\)
\(\Rightarrow x^2+2x=x^2+x-x-1\)\(\Rightarrow x^2+2x=x^2-1\)\(\Rightarrow x^2-x^2+2x=-1\)\(\Rightarrow2x=-1\)\(\Rightarrow x=-\frac{1}{2}\)