Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{49.50.51}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.5}+...+\frac{1}{49.50}-\frac{1}{50.51}\)
\(=\frac{1}{2}-\frac{1}{50.51}\)
\(=\frac{1}{2}-\frac{1}{2550}=\frac{637}{1275}\)
Gọi A là tổng dãy phân số trên
Ta có :
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{49.50.51}\)
\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{49.50.51}\)
Ta thấy:
\(\frac{2}{1.2.3}=\frac{1}{1.2}-\frac{1}{2.3};\frac{2}{2.3.4}=\frac{1}{2.3}-\frac{1}{3.4};...;\frac{2}{49.50.51}=\frac{2}{49.50}-\frac{2}{50.51}\text{}\)
\(\Rightarrow2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{49.50}-\frac{1}{50.51}\)
\(\Rightarrow2A=\frac{1}{1.2}-\frac{1}{50.51}\)
\(\Rightarrow2A=\frac{1}{2}-\frac{1}{2550}\)
\(\Rightarrow2A=\frac{1275}{2550}-\frac{1}{2550}\)
\(\Rightarrow2A=\frac{637}{1275}\Rightarrow A=\frac{637}{1275}:2=\frac{637}{2550}\)
Vậy tổng dãy phân số trên là :\(\frac{637}{2550}\)
Chúc bạn học tốt !!! :D
1)ta có 7 / 15 = 7x8/15x8 = 56/120 , 8/15=8x8 /15x8 = 64/ 120 , x / 40 = X x 3/40 x3 = X x 3 =120( cách làm này đưa về cùng mẫu số nha bạn)
vậy ta có 56/120<X x 3/ 120 <64/120
Dùng phương pháp thử nghiệm thì X x 3 = 60/120
Đáp án x= 6nha ( / chính là __ trong phân số)
đợi chút xem mk làm được câu 2 ko
\(8\frac{7}{10}+2\frac{3}{4}=\frac{87}{10}+\frac{11}{4}=\frac{174}{20}+\frac{55}{20}=\frac{229}{20}\)
Bạn chỉ cần đưa về phân số xong tính bình thường. Muốn đổi từ hỗn số sang phân số, ta chỉ cần lấy phần nguyên nhân cho mẫu rồi cộng với tử là xong. Chứ bạn cứ hỏi mấy bài dễ như thế này thì k giỏi đc đâu!!!
Coi \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)
\(\Rightarrow2A=2x\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\right)\)
\(=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\)
\(=\frac{1}{1.2}-\frac{1}{99.100}\)
\(=\frac{4950}{9900}-\frac{1}{9900}\)
\(=\frac{4949}{9900}\)
\(\frac{4}{7}x+\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{12.13.14}\right)=\frac{39}{40}\)
\(\Leftrightarrow\frac{4}{7}x+\left[\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{12.13}-\frac{1}{13.14}\right)\right]=\frac{39}{40}\)
\(\Leftrightarrow\frac{4}{7}x+\left[\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{13.14}\right)\right]=\frac{39}{40}\)
\(\Leftrightarrow\frac{4}{7}x+\left[\frac{1}{2}.\frac{45}{91}\right]=\frac{39}{40}\)
\(\Leftrightarrow\frac{4}{7}x+\frac{45}{182}=\frac{39}{40}\)
\(\Leftrightarrow\frac{4}{7}x=\frac{39}{40}-\frac{45}{182}\Leftrightarrow\frac{4}{7}x=\frac{2649}{3640}\)
\(\Rightarrow x=\frac{2649}{3640}\div\frac{4}{7}=\frac{2649}{2080}\)
Vậy x = \(\frac{2649}{2080}\)