\(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2x\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2016

Theo đề bài ta có:
\(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}\cdot\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2x\)
\(\Leftrightarrow\frac{4^5\cdot4}{3^5\cdot3}\cdot\frac{6^5\cdot6}{2^5\cdot2}=2x\)
\(\Leftrightarrow\frac{4^6}{3^6}\cdot\frac{6^6}{2^6}=2x\)
\(\Leftrightarrow\left(\frac{4}{3}\cdot\frac{6}{2}\right)^6=2x\)
\(\Leftrightarrow4^6=2x\)
\(\Leftrightarrow2^{12}=2x\)
\(\Rightarrow x=2^{11}=2048\)

11 tháng 8 2019

Đặt P = ... ( biểu thức đề bài ) 

Nhận xét: Với \(k\inℕ^∗\) ta có: 

\(\frac{k+2}{k!+\left(k+1\right)!+\left(k+2\right)!}=\frac{k+2}{k!+\left(k+1\right).k!+\left(k+2\right).k!}=\frac{k+2}{2.k!\left(k+2\right)}=\frac{1}{2.k!}\)

\(\Rightarrow\)\(P=\frac{1}{2.1!}+\frac{1}{2.2!}+...+\frac{1}{2.6!}=\frac{1}{2}\left(1+\frac{1}{2}+...+\frac{1}{720}\right)=...\)

Bài 1:

a) Ta có: \(6\frac{5}{7}-\left(1\frac{3}{4}+2\frac{5}{7}\right)\)

\(=6\frac{5}{7}-1\frac{3}{4}-2\frac{5}{7}\)

\(=4\frac{5}{7}-1\frac{3}{4}\)

\(=\frac{33}{7}-\frac{7}{4}\)

\(=\frac{132}{28}-\frac{49}{28}=\frac{83}{28}\)

b) Ta có: \(7\frac{5}{9}-\left(2\frac{3}{4}+3\frac{5}{9}\right)\)

\(=7\frac{5}{9}-2\frac{3}{4}-3\frac{5}{9}\)

\(=4\frac{5}{9}-2\frac{3}{4}\)

\(=\frac{41}{9}-\frac{11}{4}\)

\(=\frac{164}{36}-\frac{99}{36}=\frac{65}{36}\)

c) Ta có: \(\frac{-3}{5}\cdot\frac{5}{7}+\frac{-3}{5}\cdot\frac{3}{7}+\frac{-3}{5}\cdot\frac{6}{7}\)

\(=\frac{-3}{5}\cdot\left(\frac{5}{7}+\frac{3}{7}+\frac{6}{7}\right)\)

\(=\frac{-3}{5}\cdot2=-\frac{6}{5}\)

d) Ta có: \(\frac{1}{3}\cdot\frac{4}{5}+\frac{1}{3}\cdot\frac{6}{5}-\frac{4}{3}\)

\(=\frac{1}{3}\cdot\frac{4}{5}+\frac{1}{3}\cdot\frac{6}{5}-\frac{1}{3}\cdot4\)

\(=\frac{1}{3}\left(\frac{4}{5}+\frac{6}{5}-4\right)\)

\(=\frac{1}{3}\cdot\left(-2\right)=\frac{-2}{3}\)

29 tháng 8 2017

Ta có : \(\left(5x-3\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}5x-3=0\\2x+5=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}5x=3\\2x=-5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{5}\\x=-\frac{5}{2}\end{cases}}\)

11 tháng 7 2017

\(\frac{1}{2}-\frac{2}{3}+\frac{3}{4}-\frac{4}{5}-\left(-\frac{5}{6}\right)-\frac{-7}{8}+\frac{6}{7}-\frac{5}{6}+\frac{4}{5}-\frac{3}{4}+\frac{2}{3}-\frac{1}{2}\)

\(=\frac{1}{2}-\frac{2}{3}+\frac{3}{4}-\frac{4}{5}+\frac{5}{6}+\frac{7}{8}+\frac{6}{7}-\frac{5}{6}+\frac{4}{5}-\frac{3}{4}+\frac{2}{3}-\frac{1}{2}\)

\(=\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{2}{3}-\frac{2}{3}\right)+\left(\frac{3}{4}-\frac{3}{4}\right)+\left(\frac{4}{5}-\frac{4}{5}\right)+\left(\frac{5}{6}-\frac{5}{6}\right)+\frac{7}{8}+\frac{6}{7}\)

\(=\frac{7}{8}+\frac{6}{7}=\frac{49}{56}+\frac{48}{56}=\frac{49+48}{56}=\frac{97}{56}\)

30 tháng 3 2020

cách này mình tự nghĩ 

\(\hept{\begin{cases}A=\frac{4}{7}+5+\frac{3}{7^2}+\frac{5}{7^3}+\frac{6}{7^4}\\B=\frac{5}{7^4}+5+\frac{6}{7^2}+\frac{4}{7}+\frac{5}{7^3}\end{cases}}\)

\(\Rightarrow A-B=\left(\frac{4}{7}-\frac{4}{7}\right)+\left(\frac{5}{7^3}-\frac{5}{7^3}\right)+\left(5-5\right)+\left(\frac{3}{7^2}-\frac{6}{7^2}\right)+\left(\frac{6}{7^4}-\frac{5}{7^4}\right)\)

\(\Rightarrow A-B=-\frac{3}{7^2}+\frac{1}{7^4}\)

\(\Rightarrow A-B=\frac{-3\times7^2}{7^4}+\frac{1}{7^4}\)

mà \(-3\times7^2< 1\Rightarrow\frac{1}{7^4}>\frac{-3\times7^2}{7^4}\Rightarrow B>A\)

7 tháng 7 2017

a,71/60 hay 1,18(3)

b,-1/4 hay -0,25

83/41 hay 2,02

7 tháng 7 2017

-\(\frac{-2}{3}+\frac{3}{4}-\frac{-1}{6}+\frac{-2}{5}=-\frac{4}{6}+\frac{1}{6}+\frac{3}{4}-\frac{2}{5}=-\frac{2}{4}+\frac{3}{4}-\frac{2}{5}=\frac{1}{4}-\frac{2}{5}=-\frac{3}{20}\)

\(-\frac{3}{20}\)