\(( \frac{2}{3}x+\frac{5}{6} )(\frac{3}{4}x-3\frac{3}{8})=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

=\(\orbr{\begin{cases}\frac{2}{3}x+\frac{5}{6}=0\\\frac{3}{4}x-3\frac{3}{8}=0\end{cases}< =>}\orbr{\begin{cases}\frac{2}{3}x=-\frac{5}{6}\\\frac{3}{4}x=\frac{9}{8}\end{cases}=>\orbr{\begin{cases}x=-\frac{5}{4}\\x=\frac{3}{2}\end{cases}}}\)

Không viết lại đề nha!

Vì 2 cái đó nhân với nhau = 0 => 1 trong 2 cái phải là 0

\(\hept{\begin{cases}\frac{2}{3}.x+\frac{5}{6}=0\\\frac{3}{4}x-\frac{27}{8}=0\end{cases}}\)

\(\hept{\begin{cases}\frac{2}{3}x=\frac{-5}{6}\\\frac{3}{4}x=\frac{27}{8}\end{cases}}\)

\(\hept{\begin{cases}x=\frac{-5}{4}\\x=\frac{9}{2}\end{cases}}\)

Hội con 🐄 chúc bạn học tốt!!!

10 tháng 8 2020

a, \(\left|x+\frac{1}{3}\right|=0\Leftrightarrow x=-\frac{1}{3}\)

b, \(\left|\frac{5}{18}-x\right|-\frac{7}{24}=0\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{18}-x=\frac{7}{24}\\\frac{5}{18}-x=-\frac{7}{24}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{72}\\x=\frac{41}{72}\end{cases}}\)

c, \(\frac{2}{5}-\left|\frac{1}{2}-x\right|=6\Leftrightarrow\left|\frac{1}{2}-x\right|=-\frac{28}{5}\)vô lí 

Vì \(\left|\frac{1}{2}-x\right|\ge0\forall x\)*luôn dương* Mà \(-\frac{28}{5}< 0\)

=> Ko có x thỏa mãn 

10 tháng 8 2020

\(|x+\frac{1}{3}|=0\)

\(< =>x+\frac{1}{3}=0< =>x=-\frac{1}{3}\)

\(|x+\frac{3}{4}|=\frac{1}{2}\)

\(< =>\orbr{\begin{cases}x+\frac{3}{4}=\frac{1}{2}\\x+\frac{3}{4}=-\frac{1}{2}\end{cases}}\)

\(< =>\orbr{\begin{cases}x=-\frac{1}{4}\\x=-\frac{5}{4}\end{cases}}\)

                                      Đề luyện thi HSG số 5Bài 1 (3 điểm) Thực hiện phép tính:a) \(A = (0,3(4) + 1,(62) : 14\frac{7}{11} - \frac{\frac{1}{2} + \frac{1}{3}}{0,8(5)} : \frac{90}{11}) . \frac{315}{106} : \frac{1}{2007}\)b) \(A = (\frac{\frac{4}{15} + \frac{4}{35} + \frac{4}{63} +...+ \frac{4}{399}}{\frac{3}{8.11} + \frac{3}{11.14} +...+ \frac{3}{197.200}}) . \frac{201420142014}{201520152015}\)c) \(C = 1 + \frac{1}{2} . (1 + 2) + \frac{1}{3}...
Đọc tiếp

                                      Đề luyện thi HSG số 5

Bài 1 (3 điểm) Thực hiện phép tính:

a) \(A = (0,3(4) + 1,(62) : 14\frac{7}{11} - \frac{\frac{1}{2} + \frac{1}{3}}{0,8(5)} : \frac{90}{11}) . \frac{315}{106} : \frac{1}{2007}\)

b) \(A = (\frac{\frac{4}{15} + \frac{4}{35} + \frac{4}{63} +...+ \frac{4}{399}}{\frac{3}{8.11} + \frac{3}{11.14} +...+ \frac{3}{197.200}}) . \frac{201420142014}{201520152015}\)

c) \(C = 1 + \frac{1}{2} . (1 + 2) + \frac{1}{3} . (1 + 2 +3) +\frac{1}{4} . (1 + 2 + 3 + 4) + ...+ \frac{1}{2015} . (1 + 2 + 3 +...+2015)\)

Bài 2 (10 điểm) Tìm x, y, z biết:

a) \((1 - x) . (2x + 3) < 0\)

b) \((2x - 1)^4 = 16\)

c) \((2x + 1)^4 = (2x + 1)^6\)

d) \(\frac{x - 1}{-15} = \frac{-60}{x-1}\)

e) \(-4x . (x - 5) - 2x . (8 - 2x) = -3\)

f) \(3x = 27; 7y = 5z \) và \(x - 7 + z = 32\)

g) \(\frac{2x + 1}{5} = \frac{3y - 2}{7} = \frac{2x + 3y - 1}{6x}\)

h) \(\frac{x+6}{2002} + \frac{x + 5}{2003} + \frac{x + 4}{2004} = \frac{x + 3}{2005} + \frac{x + 2}{2006} + \frac{x + 1}{2007}\)

Bài 3 (1,5 điểm) Bốn lớp 7A, 7B, 7C, 7D đi lao động trồng cây. Biết rằng số cây trồng của bốn lớp 7A, 7B, 7C, 7D lần lượt tỉ lệ với 0,8; 0,9; 1; 1,1 và lớp 7B trồng nhiều hơn lớp 7A là 5 cây. Tính số cây mỗi lớp đã trồng.

Bài 4 (1,5 điểm)

a) Tìm các số a1, a2, a3,..., a100, biết \(\frac{a_{1} - 1}{100} = \frac{a_{2} - 2}{99} = \frac{a_{3} - 3}{98} =...= \frac{a_{100} - 100}{1}\) và \(a_{1} + a_{2} + a_{3} +...+ a_{100} = 10100\)

b) Biết rằng: \(1^4 + 2^4 + 3^4 +...+ 10^4 = 25333\). Tính \(S = 2^4 + 4^4 + 6^4 +...+ 20^4\)

Bài 5 (1,5 điểm) Cho 3 số x, y, z là 3 số khác 0 thỏa mãn điều kiện: \(\frac{y + z -x}{x} = \frac{z + x -y}{y} = \frac{x +y - z}{z}\). Hãy tính giá trị của biểu thức \(A = (1 + \frac{x}{y})(1 + \frac{y}{x})(1 + \frac{z}{x})\)

Bài 6 (3,0 điểm) Cho \(\Delta ABC\), gọi M và N theo thứ tự là trung điểm của AC và AB. Trên tia đối của tia MB lấy điểm D sao cho MD = MB, trên tia đối của tia NC lấy điểm E sao cho NE = NC. Chứng minh rằng:

a) Ba điểm E, A, D thẳng hàng

b) A là trung điểm của ED

 

4
29 tháng 12 2018

Bài easy quá mà!

4. a) Áp dụng tỉ dãy số bằng nhau:

\(\frac{a_1-1}{100}=\frac{a_2-2}{99}=...=\frac{a_{100}-100}{1}\)

\(=\frac{\left(a_1+a_2+...+a_{100}\right)-\left(1+2+...+100\right)}{100+99+...+2+1}=\frac{5050}{5050}=1\)

Suy ra: \(a_1-1=100\Leftrightarrow a_1=101\)

\(a_2-2=99\Leftrightarrow a_2=101\)

.......v.v...

\(a_{100}-100=1\Leftrightarrow a_{100}=101\)

Do đó: \(a_1=a_2=a_3=...=a_{100}=101\)

29 tháng 12 2018

Bài 5/

Theo t/c dãy tỉ số bằng nhau,ta có: \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)\(=\frac{2x}{x}\)

Suy ra:

 \(\frac{y+z-x}{x}=\frac{2x}{x}\Leftrightarrow y+z-x=2x\Rightarrow x=y=z\) (vì nếu \(x\ne y\ne z\Rightarrow y+z-x\ne2x\) "không thỏa mãn")

Thay vào A,ta có: \(A=\left(1+\frac{x}{x}\right)\left(1+\frac{y}{y}\right)\left(1+\frac{z}{z}\right)=2.2.2=8\)

21 tháng 1 2017

a) \(\frac{3}{4}+\frac{1}{4}.x=\frac{1}{2}+\frac{1}{2}x\)

\(\Rightarrow3.\frac{1}{4}+\frac{1}{4}.x=\frac{1}{2}.\left(x+1\right)\)

\(\Rightarrow\frac{1}{4}.\left(x+3\right)=\frac{1}{2}.\left(x+1\right)\)

\(\Rightarrow\frac{x+1}{x+3}=\frac{1}{4}:\frac{1}{2}=\frac{1}{2}\)\(\Rightarrow\left(x+1\right).2=x+3\Rightarrow2x+2=x+3\)

\(\Rightarrow2x-x=3-2\Rightarrow x=1\)

vay x=1

a)\(x=\dfrac{-14\cdot52}{72}\\ x=\dfrac{-91}{9}\)

b)\(x=\dfrac{120\cdot7.2}{70}\\ x=\dfrac{432}{35}\)

c)\(x=\dfrac{2\dfrac{2}{3}\cdot8.5}{5}\\ x=\dfrac{68}{15}\)

d)\(x=\dfrac{4\dfrac{2}{5}\cdot9.5}{8}\\ x=\dfrac{209}{40}\)

                                                         Đề luyện thi HSG số 4Bài 1 (4 điểm)a) Tính giá trị biểu thức (S – P)2017, biết:\(S = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} +...+ \frac{1}{2013} - \frac{1}{2014} + \frac{1}{2015}\)\(P = \frac{1}{1008} + \frac{1}{1009} + \frac{1}{1010} +...+ \frac{1}{2014} + \frac{1}{2015}\)b) Tính giá trị biểu thức \(B = [\frac{4}{11} . (\frac{1}{25})^0 +...
Đọc tiếp

                                                         Đề luyện thi HSG số 4

Bài 1 (4 điểm)

a) Tính giá trị biểu thức (S – P)2017, biết:

\(S = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} +...+ \frac{1}{2013} - \frac{1}{2014} + \frac{1}{2015}\)

\(P = \frac{1}{1008} + \frac{1}{1009} + \frac{1}{1010} +...+ \frac{1}{2014} + \frac{1}{2015}\)

b) Tính giá trị biểu thức \(B = [\frac{4}{11} . (\frac{1}{25})^0 + \frac{7}{22} . 2]^{2016} - (\frac{1}{2^2} : \frac{8^2}{4^4})^{2017}\)

Bài 2 (6,0 điểm)

a) Tìm x biết: \(|2x + 3| = x + 2\)

b) Tìm số nguyên dương n biết: \(\frac{4^5 + 4^5 + 4^5 + 4^5}{3^5 + 3^5 + 3^5} . \frac{6^5 + 6^5 + 6^5 + 6^5 + 6^5 + 6^5}{2^5 + 2^5} = 2^n\)

c) So sánh \(\sqrt{8} - 1\) và \(2\)

d) Tìm x, y, z biết: \(\left\{\begin{matrix}\frac{3|x| + 5}{3} = \frac{3|y| - 1}{5} = \frac{3 - z}{7}\\2|z| + 7|y| + 3z = -14 \end{matrix}\right.\)

Bài 3 (3,0 điểm) Cho hàm số \(y = |2 - x| - |x + 2| \)         (1)

a) Vẽ đồ thị hàm số (1)

b) Dùng đồ thị hàm số (1), tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức: \(A = |2 - x| - |x + 2| - 2017\)

Bài 4 (6,0 điểm) Cho \(\Delta ABC \) \((\hat{C} > 90^o)\). Lấy M là trung điểm của BC. Đường thẳng đi qua M và vuông góc với tia phân giác của \(\widehat{BAC}\) tại H cắt các cạnh AB, AC lần lượt tại E, F. Chứng minh rằng:

a) HE = HF

b) \(2\widehat{BME} = \widehat{ACB} - \hat{B}\)

c) \(\frac{EF^2}{4} + AH^2 = AE^2\)

d) BE = CF

Bài 5 (1,0 điểm) Chứng minh P < 1 biết \(P = \frac{1}{3^2} - \frac{1}{3^4} + \frac{1}{3^6} - \frac{1}{3^8} + ...+ \frac{1}{3^{2006}} - \frac{1}{3^{2008}}\)

                                                                   --- Hết ---

 

 

 

 

 

 

 

 

 

 

 

0
24 tháng 9 2016

a. 6,5 -9/4:/x+1/3\=/-2\

6,5-9/4:/x+1/3\=2

9/4:/x+1/3\=6,5-2

9/4:/x+1/3\=4,5

/x+1/3\=9/4:4,5

/x+1/3\=1/2

x+1/3=1/2                hoặc           x+1/3= -1/2

x= 1/2-1/3                                    x= -1/2-1/3

x= 1/6                                          x= -5/6

Vậy x=1/6 hoặcx= -5/6

b.     2-/3/2x-1/4\ = /-5/4\

2-/3/2x-1/4\=5/4

/3/2x-1/4\=2-5/4

/3/2x-1/4\=3/4

3/2x-1/4=3/4                    hoặc         3/2x-1/4=  -3/4

3/2x=3/4+1/4                                    3/2x= -3/4+1/4

3/2x=1                                              3/2x=  -1/2

x=1:3/2                                              x=  -1/2:3/2

x=2/3                                                x=  -1/3

Vậy x=2/3 hoặc  x=   -1/3