K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2018

\(\Leftrightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{31}{32}.\)

\(\Leftrightarrow1-\frac{1}{x+2}=\frac{31}{32}\)

\(\Leftrightarrow\frac{1}{32}=\frac{1}{x+2}\)

\(\Leftrightarrow x+2=32\Rightarrow x=30\)

8 tháng 2 2022

hello❔

13 tháng 8 2019

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+2\right)}=\frac{20}{41}\)

\(\Leftrightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{20}{41}\)

\(\Leftrightarrow1-\frac{1}{x+2}=\frac{21}{41}\)

\(\Leftrightarrow\frac{1}{x+2}=1-\frac{21}{41}\)

\(\Leftrightarrow\frac{1}{x+2}=\frac{20}{41}\)

\(\Leftrightarrow20\left(x+2\right)=41\)

\(\Leftrightarrow x-2=\frac{41}{20}\)

\(\Leftrightarrow x=\frac{41}{20}+2\)

\(\Leftrightarrow x=\frac{81}{20}\)

13 tháng 8 2019

\(\frac{1}{1.3}+...+\frac{1}{a\left(a+2\right)}=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+....+\frac{2}{a\left(a+2\right)}\right)=\frac{1}{2}\left(1-\frac{1}{3}+....-\frac{1}{a+2}\right)\) 

\(=\frac{1}{2}\left(1-\frac{1}{a+2}\right)=\frac{20}{41}\Rightarrow a+2=41\Leftrightarrow a=39\)

25 tháng 3 2016

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x.\left(x+2\right)}=\frac{5}{11}\)

\(\Rightarrow\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{5}{11}\)

\(\Rightarrow\frac{1}{2}\left(1-\frac{1}{x+2}\right)=\frac{5}{11}\Rightarrow1-\frac{1}{x+2}=\frac{5}{11}\div\frac{1}{2}=\frac{10}{11}\)

\(\Rightarrow\frac{1}{x+2}=1-\frac{10}{11}=\frac{1}{11}\Rightarrow x+2=11\Rightarrow x=11-2=9\)

\(\frac{1}{1.3}+\frac{1}{3.5}+......+\frac{1}{x+\left(x+2\right)}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+........+\frac{1}{x}-\frac{1}{x+2}\)

\(=1-\frac{1}{x+2}=\frac{5}{11}\)

\(\frac{1}{x+2}=1-\frac{5}{11}=\frac{6}{11}\)

=> không có kết quả

8 tháng 4 2016

bạn nào giải giúp mình với

nếu đúng thì mình sẽ ***

8 tháng 4 2016

=1/2*(1-1/3+1/3-1/5+....+1/x+1/x+2)

=1/2*(1-1/x+2)

=>1/2*x+1/x+2=20/21

Đến đó đưa về giống tìm x nha

21 tháng 5 2017

x = \(\frac{2}{99}\)

21 tháng 5 2017

\(\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\right)-x=-\frac{100}{99}\)

\(\Rightarrow\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{97}-\frac{1}{99}\right)-x=-\frac{100}{99}\)

\(\Rightarrow\left(1-\frac{1}{99}\right)-x=-\frac{100}{99}\)

\(\Rightarrow\frac{98}{99}-x=-\frac{100}{99}\)

\(\Rightarrow x=\frac{98}{99}-\left(-\frac{100}{99}\right)\)

\(\Rightarrow x=\frac{198}{99}=2\)

Vậy x = 2

23 tháng 3 2017

1/1.3+1/3.5+............+1/x.(x+2) = 50/102

2/1.3+2/3.3+...........+2/x.(x+2) =50/51

1-1/x+2=50/51

x+1/x+2=50/51

(x+1).51=(x+2).50

51x+51=50x+100

51x-50x=100-51

x=49

vay x=49

17 tháng 7 2019

b  \(\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{x\cdot\left(x+1\right)}=\frac{19}{100}\)

=>\(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{19}{100}\)

=>\(\frac{1}{5}-\frac{1}{x+1}\)\(=\frac{19}{100}\)

=>\(\frac{1}{x+1}=\frac{1}{5}-\frac{19}{100}\)

=>\(\frac{1}{x+1}=\frac{1}{100}\)

=> x+1 =100

=>x=99

17 tháng 7 2019

b) \(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{x\left(x+1\right)}=\frac{19}{100}\)

\(\Rightarrow\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{19}{100}\)

\(\Rightarrow\frac{1}{5}-\frac{1}{x+1}=\frac{19}{100}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{5}-\frac{19}{100}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{100}\)

\(\Rightarrow x+1=100\)

\(\Rightarrow x=99\)

c) \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{x\left(x+2\right)}=\frac{49}{99}\)

\(\Rightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{49}{99}\)

\(\Rightarrow1-\frac{1}{x+2}=\frac{49}{99}\)

\(\Rightarrow\frac{1}{x+2}=1-\frac{49}{99}\)

\(\Rightarrow\frac{1}{x+2}=\frac{50}{99}\)

\(\Rightarrow50.\left(x+2\right)=99\)

\(\Rightarrow x+2=\frac{99}{50}\)

\(\Rightarrow x=-\frac{1}{99}\)

d) Ta có : 6 = 1.6 = 2.3 = (-2) . (-3)

Lâp bảng xét 6 trường hợp: 

\(2x+1\)\(1\)\(6\)\(2\)\(3\)\(-2\)\(-3\)
\(y-2\)\(6\)\(1\)\(3\)\(2\)\(-3\)\(-2\)
\(x\)\(0\)\(\frac{5}{2}\)\(\frac{1}{2}\)\(1\)\(-\frac{3}{2}\)\(-2\)
\(y\)\(8\)\(3\)\(5\)\(4\)\(-1\)\(0\)

Vậy các cặp (x,y) \(\inℤ\)thỏa mãn là : (0;4) ; (1; 4) ; (-2 ; 0)

e) \(x^2-3xy+3y-x=1\)

\(\Rightarrow x\left(x-3y\right)+3y-x=1\)

\(\Rightarrow x\left(x-3y\right)-\left(x-3y\right)=1\)

\(\Rightarrow\left(x-3y\right)\left(x-1\right)=1\)

Lại có : 1 = 1.1 = (-1) . (-1)

Lập bảng xét các trường hợp : 

\(x-1\)\(1\)\(-1\)
\(x-3y\)\(1\)\(-1\)
\(x\)\(2\)\(0\)
\(y\)\(\frac{1}{3}\)\(\frac{1}{3}\)

Vậy các cặp(x,y) thỏa mãn là : \(\left(2;\frac{1}{3}\right);\left(0;\frac{1}{3}\right)\)