Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\left(\frac{-1}{3}\right)^3\cdot x=\frac{1}{81}\) \(< =>\frac{-1}{27}x=\frac{1}{81}\)\(< =>x=\frac{-1}{3}\)
a) (x + 2)2 = 81
=> (x + 2)2 = 92
=> \(\orbr{\begin{cases}x+2=-9\\x+2=9\end{cases}}\Rightarrow\orbr{\begin{cases}x=-11\\x=7\end{cases}}\)
b) 5x + 5x + 2 = 650
=> 5x + 5x . 52 = 650
=> 5x + 5x . 25 = 650
=> 5x (25 + 1) = 650
=> 5x . 26 = 650
=> 5x = 650 : 26
=> 5x = 25
=> 5x = 52
=> x = 2
d) (2x - 1)2 - 5 = 20
=> (2x - 1)2 = 25
=> (2x - 1)2 = 52
=> \(\orbr{\begin{cases}2x-1=5\\2x-1=-5\end{cases}\Rightarrow\orbr{\begin{cases}2x=6\\2x=-4\end{cases}\Rightarrow}\orbr{\begin{cases}x=3\\x=-2\end{cases}}}\)
g) (x - 1)3 = (x - 1)
=> (x - 1)3 - (x - 1) = 0
=> (x - 1) .[(x - 1)2 - 1] = 0
=> \(\orbr{\begin{cases}x-1=0\\\left(x-1\right)^2-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\\left(x-1\right)^2=1^2\end{cases}\Rightarrow}\orbr{\begin{cases}x=1\\x-1=\pm1\end{cases}}}\)
Nếu x - 1 = 1
=> x = 2
Nếu x - 1 = -1
=> x = 0
Vậy \(x\in\left\{0;1;2\right\}\)
1.
a)\(\left(x-\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
b)\(\left(x-2\right)^2=1\Leftrightarrow\orbr{\begin{cases}x-2=\sqrt{1}\\x-2=-\sqrt{1}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{1}+2\\x=-\sqrt{1}+2\end{cases}}\)
Mấy câu kia tương tự,bạn tự làm nha :))
\(\left(1-\frac{2}{2\times3}\right)\times\left(1-\frac{2}{3\times4}\right)\times\left(1-\frac{2}{4\times5}\right)\times...\times\left(1-\frac{2}{99\times100}\right)\)
=\(\frac{2}{2}-\frac{2}{3}+\frac{2}{3}-\frac{2}{4}+\frac{2}{4}-\frac{2}{5}+...+\frac{2}{99}-\frac{2}{100}\)
=\(\frac{2}{2}-\frac{2}{100}\)
=\(\frac{98}{100}\)
=\(\frac{49}{50}\)
a, \(\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)\(\Rightarrow\left(x-\frac{1}{2}\right)^3=\left(\frac{1}{3}\right)^3\)\(\Rightarrow x-\frac{1}{2}=\frac{1}{3}\)\(\Rightarrow x=\frac{5}{6}\)
b, \(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+6}\)
\(\Rightarrow\left(x-1\right)^{x+2}-\left(x-1\right)^{x+6}=0\)
\(\Rightarrow\left(x-1\right)^{x+2}\left[1-\left(x-1\right)^4\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-1\right)^{x+2}=0\\1-\left(x-1\right)^4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x-1=0\\\left(x-1\right)^4=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\\left(x-1\right)^4=1\end{cases}}\)
Giải: \(\left(x-1\right)^4=1\)\(\Rightarrow\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}\)
c, Vì \(\left(x+20\right)^{100}\ge0\)\(\forall x\inℝ\); \(\left|y+4\right|\ge0\)\(\forall y\inℝ\)
\(\Rightarrow\left(x+20\right)^{100}+\left|y+4\right|\ge0\)\(\forall x,y\inℝ\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x+20=0\\y+4=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-20\\y=-4\end{cases}}\)
d, \(2^{x-1}=16\)\(\Rightarrow2^{x-1}=2^4\)=> x - 1 = 4 => x = 5
Bài 1:
\(\left(\frac{1}{4.9}+\frac{1}{9.14}+\frac{1}{14.19}+...+\frac{1}{44.49}\right).\frac{1-3-5-...-49}{89}\)
\(=\frac{1}{5}\left(\frac{5}{4.9}+\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{44.49}\right).-\left(\frac{3+5+7+...+49-1}{89}\right)\)
\(=\frac{1}{5}\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{44}-\frac{1}{49}\right).-\left(\frac{\left(49+3\right).24:2-1}{89}\right)\)(Do tổng có 24 số)
\(=\frac{1}{5}\left(\frac{1}{4}-\frac{1}{49}\right).-\left(\frac{52.12-1}{89}\right)\)
\(=\frac{1}{5}.\frac{45}{196}.\left(-7\right)=-\frac{9}{28}\)
Bài 2:
a) Ta có:
\(|2x+3|=x+2\)
<=> x + 2 >=0 và: \(\orbr{\begin{cases}2x+3=x+2\\2x+3=-x-2\end{cases}}\)
<=> x >= -2 và \(\orbr{\begin{cases}2x-x=2-3\\2x+x=-2-3\end{cases}}\)
<=> x >= -2 và \(\orbr{\begin{cases}x=-1\left(n\right)\\x=-\frac{5}{3}\left(n\right)\end{cases}}\)( n là viết tắt của "nhận" nha bạn)
Vậy x ={-1 ; -5/3}
Xin lỗi vì tớ ko thể lồng dấu \(\hept{\begin{cases}\\\end{cases}}\) và dấu \(\orbr{\begin{cases}\\\end{cases}}\) được nếu lồng sẽ bị lỗi nên tớ dùng chữ "và" nha bạn
b)
A = \(|x-2006|+|2007-x|\)
Vì \(\hept{\begin{cases}|x-2006|\ge0\\|2007-x|\ge0\end{cases}}\)
Nến giá trị A sẽ nhỏ nhất khi \(\orbr{\begin{cases}x=2006\\x=2007\end{cases}}\)
=> Min A = 1 khi x ={2006 ; 2007}
ĐK: \(x\ne\left\{0;-1;-2;-3\right\}\)
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}-\frac{1}{x}=\frac{1}{2017}\)
\(\Leftrightarrow\)\(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}-\frac{1}{x}=\frac{1}{2017}\)
\(\Leftrightarrow\)\(-\frac{1}{x+3}=\frac{1}{2017}\)
\(\Rightarrow\)\(x+3=-2017\)
\(\Leftrightarrow\)\(x=-2020\)
Vậy...
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}-\frac{1}{x}=\frac{1}{2017}\)
\(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}-\frac{1}{x}=\frac{1}{2017}\)
\(\frac{1}{x}-\frac{1}{x+3}-\frac{1}{x}=\frac{1}{2017}\)
\(-\frac{1}{x+3}=\frac{1}{2017}\)
\(-2017=x+3\)
\(x=-2020\)