Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
\(\frac{15}{41}+\frac{-138}{41}\le x< \frac{1}{2}+\frac{1}{3}+\frac{1}{6}\)
\(\frac{123}{41}\le x< 1\)
\(\frac{123}{41}\le x< \frac{41}{41}\)
\(\Rightarrow123\le x< 41\)
\(\Rightarrow x\in\varnothing\)
=> -123 / 41 < hoặc = x < 1
=> -3 < hoặc = x <1
=>x = ( -3 ; -2 ; -1 ; 0 )
\(\frac{15}{41}+\frac{-138}{41}\le x< \frac{1}{2}+\frac{1}{3}+\frac{1}{6}\)
\(\Leftrightarrow-3\le x< 1\)
\(\Leftrightarrow x\in\left\{-3;-2;-1;0\right\}\)
\(\frac{15}{41}+\frac{-138}{41}\le x< \frac{1}{2}+\frac{1}{3}+\frac{1}{6}\)
\(\Rightarrow\frac{15+(-138)}{41}\le x< \frac{1\cdot3}{6}+\frac{1\cdot2}{6}+\frac{1}{6}\)
\(\Rightarrow\frac{-123}{41}\le x< \frac{3}{6}+\frac{2}{6}+\frac{1}{6}\)
\(\Rightarrow-3\le x< 1\Leftrightarrow x\in\left\{-3;-2;-1;0\right\}\)
\(\frac{15}{41}+\frac{-138}{41}< x< \frac{1}{2}+\frac{1}{3}+\frac{1}{6}\)
\(\Leftrightarrow\frac{-123}{41}< x< \frac{1.3+1.2+1}{6}\)
\(\Leftrightarrow-3< x< 1\)
\(\Rightarrow x\in\left\{-2;-1;0\right\}\)
\(\frac{x}{5}=\frac{15}{2}-\frac{51}{10}\)
\(\frac{x}{5}=\frac{15.5-51}{10}\)
\(\frac{x}{5}=\frac{24}{10}\)
\(\frac{x}{5}=\frac{12}{5}\)
\(x=12\)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+2\right)}=\frac{20}{41}\)
\(\Leftrightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{20}{41}\)
\(\Leftrightarrow1-\frac{1}{x+2}=\frac{21}{41}\)
\(\Leftrightarrow\frac{1}{x+2}=1-\frac{21}{41}\)
\(\Leftrightarrow\frac{1}{x+2}=\frac{20}{41}\)
\(\Leftrightarrow20\left(x+2\right)=41\)
\(\Leftrightarrow x-2=\frac{41}{20}\)
\(\Leftrightarrow x=\frac{41}{20}+2\)
\(\Leftrightarrow x=\frac{81}{20}\)
\(\frac{1}{1.3}+...+\frac{1}{a\left(a+2\right)}=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+....+\frac{2}{a\left(a+2\right)}\right)=\frac{1}{2}\left(1-\frac{1}{3}+....-\frac{1}{a+2}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{a+2}\right)=\frac{20}{41}\Rightarrow a+2=41\Leftrightarrow a=39\)
\(\frac{1+0,6-\frac{3}{7}}{\frac{8}{3}+\frac{8}{5}-\frac{8}{7}}=\frac{\frac{3}{3}+\frac{3}{5}-\frac{3}{7}}{\frac{8}{3}+\frac{8}{5}-\frac{8}{7}}=\frac{3.\left(\frac{1}{3}+\frac{1}{5}-\frac{1}{7}\right)}{8.\left(\frac{1}{3}+\frac{1}{5}-\frac{1}{7}\right)}=\frac{3.1}{8.1}=\frac{3}{8}\)
\(\frac{\frac{1}{3}+0,25-\frac{1}{5}+0,125}{\frac{7}{6}+\frac{7}{8}-0,7+\frac{7}{16}}=\frac{\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\frac{1}{8}}{\frac{7}{6}+\frac{7}{8}-\frac{7}{10}+\frac{7}{16}}=\frac{1.\left(\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\frac{1}{8}\right)}{7.\left(\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\frac{1}{8}\right)}=\frac{1.1}{7.1}=\frac{1}{7}\)
=>\(\frac{3}{8}-\frac{1}{7}=\frac{13}{56}\)
a) \(\frac{-1}{2}+\frac{-1}{3}+\frac{-5}{4}\)
\(=\left(\frac{-1}{2}+\frac{-1}{3}\right)+\frac{-5}{4}\)
\(=\frac{-5}{6}+\frac{-5}{4}\)
\(=\frac{-50}{24}=\frac{-25}{12}\)
A)\(\frac{-1}{2}+\frac{-1}{3}+\frac{-5}{4}\)
\(=\frac{-6}{12}+\frac{-4}{12}+\frac{-15}{12}\)
\(=\frac{-25}{12}\)
\(a,\)\(x+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{41.45}=-\frac{37}{45}\)
\(x+\left(\frac{9-5}{5.9}+\frac{13-9}{9.13}+\frac{17-13}{13.17}+...+\frac{45-41}{41.45}\right)=-\frac{37}{45}\)
\(x+\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+....+\frac{1}{41}-\frac{1}{45}\right)-\frac{37}{45}\)
\(x+\left(\frac{1}{5}-\frac{1}{45}\right)=-\frac{37}{45}\)
\(x+\frac{8}{45}=-\frac{37}{45}\)
\(x=-\frac{37}{45}-\frac{8}{45}\)
\(x=-1\)
=1/2*(1-1/3+1/3-1/5+....+1/x+1/x+2)
=1/2*(1-1/x+2)
=>1/2*x+1/x+2=20/21
Đến đó đưa về giống tìm x nha
\(\frac{1}{3}x+\frac{2}{5}\left(x-1\right)=0\)
\(\Leftrightarrow\frac{1}{3}x+\frac{2}{5}x-\frac{2}{5}=0\)
\(\Leftrightarrow\frac{1}{3}x+\frac{2}{5}x=0+\frac{2}{5}\)
\(\Leftrightarrow x\left(\frac{1}{3}+\frac{2}{5}\right)=\frac{2}{5}\)
\(\Leftrightarrow x\left(\frac{5}{15}+\frac{6}{15}\right)=\frac{2}{5}\)
\(\Leftrightarrow\frac{11}{15}x=\frac{2}{5}\)
\(\Leftrightarrow x=\frac{2}{5}\div\frac{11}{15}\)
\(\Leftrightarrow x=\frac{6}{11}\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{49}{50}\)
\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{49}{50}\)
\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{49}{50}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{49}{50}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{49}{50}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{49}{50}\div2\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{49}{50}\times\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{49}{100}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{49}{100}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{50}{100}-\frac{49}{100}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{100}\)
\(\Leftrightarrow x+1=100\)
\(\Leftrightarrow x=100-1\)
\(\Leftrightarrow x=99\)
\(\frac{15}{41}+\frac{-138}{41}\le x< \frac{1}{2}+\frac{1}{3}+\frac{1}{6}\)
\(\Rightarrow-3\le x< 1\)
\(\Rightarrow-3\le-3;-2;-1;0< 1\)
\(\Rightarrow x\in\left\{-3;-2;-1;0\right\}\)
~ Hok tốt ~