\( {1{} \over x-1}\)<3

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2018

        1x -1 < 3 

<=> x - 1 < 3 

<=> x      < 4  ( nhận )

Vay : x < 4 

27 tháng 5 2018

Ta có \(A=\frac{\sqrt{x}-1}{\sqrt{x}+1}=\frac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\frac{2}{\sqrt{x}+1}\)

Để A nguyên thì \(\frac{2}{\sqrt{x}+1}\)phải nguyên suy ra \(\sqrt{x}+1\)là ước của 2

Ta thấy \(Ư\left(2\right)=\left\{1;-1;2;-2\right\}\) mà điều kiện cho \(x\ge0\)và \(x\ne1\)nên \(\sqrt{x}+1\in\left\{1;2\right\}\)

Với \(\sqrt{x}+1=1\Rightarrow\sqrt{x}=0\Rightarrow x=0\)(thoải mãn )

Với \(\sqrt{x}+1=2\Rightarrow\sqrt{x}=1\Rightarrow x=1\)(loại)

Vậy x = 0 thì A nguyên

7 tháng 7 2021

Ta có: C = \(\frac{x+10}{\sqrt{x}+3}=\frac{x-9+19}{\sqrt{x}+3}=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+19}{\sqrt{x}+3}=\sqrt{x}-3+\frac{19}{\sqrt{x}+3}\)

C = \(\sqrt{x}+3+\frac{19}{\sqrt{x}+3}-6\ge2.\sqrt{\left(\sqrt{x}+3\right)\cdot\frac{19}{\left(\sqrt{x}+3\right)}}-6\)(bđt cosi)

\(\ge2\sqrt{19}-6\)

Dấu "=" xảy ra <=> \(\sqrt{x}+3=\frac{19}{\sqrt{x}+3}\) <=> \(\left(\sqrt{x}+3\right)^2=19\)

<=> \(\orbr{\begin{cases}\sqrt{x}+3=\sqrt{19}\\\sqrt{x}+3=-\sqrt{19}\left(vn\right)\end{cases}}\) <=> \(\sqrt{x}=\sqrt{19}-3\) <=> \(x=22-6\sqrt{19}\)

Vậy MinC = \(2\sqrt{19}-6\) <=> \(x=22-6\sqrt{19}\)