Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x+3}{2007}-\dfrac{x+3}{2008}=\dfrac{x+3}{2010}-\dfrac{x+3}{2009}\)
\(\Rightarrow\left(\dfrac{x+3}{2007}-\dfrac{x+3}{2008}\right)-\left(\dfrac{x+3}{2010}-\dfrac{x+3}{2009}\right)=0\)
\(\Rightarrow\dfrac{x+3}{2007}-\dfrac{x+3}{2008}-\dfrac{x+3}{2010}+\dfrac{x+3}{2009}=0\)
\(\left(x+3\right)\left(\dfrac{1}{2007}-\dfrac{1}{2008}-\dfrac{1}{2010}+\dfrac{1}{2009}\right)=0\)
\(x+3=0\Rightarrow x=-3\)
\(\dfrac{x+3}{2007}-\dfrac{x+3}{2008}=\dfrac{x+3}{2010}-\dfrac{x+3}{2009}\\ \dfrac{x+3}{2007}-\dfrac{x+3}{2008}-\dfrac{x+3}{2010}+\dfrac{x+3}{2009}=0\\ \left(x+3\right)\left(\dfrac{1}{2007}-\dfrac{1}{2008}-\dfrac{1}{2010}+\dfrac{1}{2009}\right)=0\\ \Rightarrow x+3=0\Rightarrow x=-3\)
\(\Leftrightarrow\left(\dfrac{x-1}{2009}-1\right)+\left(\dfrac{x-2}{2008}-1\right)=\left(\dfrac{x-3}{2007}-1\right)+\left(\dfrac{x-4}{2006}-1\right)\)
=>x-2010=0
hay x=2010
a)\(\frac{5}{2}-3\left(\frac{1}{3}-x\right)=\frac{1}{4}-7x\)
\(\Leftrightarrow\frac{5}{2}-1+x=\frac{1}{4}-7x\)
\(\Leftrightarrow8x=-\frac{5}{4}\)
\(\Leftrightarrow x=-\frac{5}{32}\)
c)\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2001}{2003}\)
\(\Leftrightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2001}{2003}\)
\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{4006}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2001}{4006}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2001}{4006}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2003}\)
\(\Leftrightarrow x+1=2003\)
\(\Leftrightarrow x=2002\)
Ta có :
\(A=\dfrac{\dfrac{2008}{1}+\dfrac{2007}{2}+....................+\dfrac{2}{2007}+\dfrac{1}{2008}}{\dfrac{1}{2}+\dfrac{1}{3}+....................+\dfrac{1}{2008}+\dfrac{1}{2009}}\)
\(\Rightarrow A=\dfrac{\left(\dfrac{2007}{2}+1\right)+.....+\left(\dfrac{2}{2007}+1\right)+\left(\dfrac{1}{2008}+1\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+...............+\dfrac{1}{2008}+\dfrac{1}{2009}}\)
\(\Rightarrow A=\dfrac{\dfrac{2009}{2}+...................+\dfrac{2009}{2007}+\dfrac{2009}{2008}+\dfrac{2009}{2009}}{\dfrac{1}{2}+\dfrac{1}{3}+.....................+\dfrac{1}{2008}+\dfrac{1}{2009}}\)
\(\Rightarrow A=\dfrac{2009\left(\dfrac{1}{2}+..........................+\dfrac{1}{2008}+\dfrac{1}{2009}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+............................+\dfrac{1}{2008}+\dfrac{1}{2009}}\)
\(\Rightarrow A=2009\)
\(\dfrac{x+1}{2011}+\dfrac{x+2}{2010}+\dfrac{x+3}{2009}+\dfrac{x+4}{2008}=-4\)
\(\Rightarrow\dfrac{x+1}{2011}+1+\dfrac{x+2}{2010}+1+\dfrac{x+3}{2009}+1+\dfrac{x+4}{2008}+1=0\)
\(\Rightarrow\dfrac{x+2012}{2011}+\dfrac{x+2012}{2010}+\dfrac{x+2012}{2009}+\dfrac{x+2012}{2008}=0\)
\(\Rightarrow\left(x+2012\right)\left(\dfrac{1}{2011}+\dfrac{1}{2010}+\dfrac{1}{2009}+\dfrac{1}{2008}\right)=0\)
Mà \(\dfrac{1}{2011}+\dfrac{1}{2010}+\dfrac{1}{2009}+\dfrac{1}{2008}\ne0\)
\(\Rightarrow x+2012=0\Rightarrow x=-2012\)
Vậy x = -2012
Câu đầu sai đề nhé! Phải là 2007 chứ ko phải 20007!
\(A=\dfrac{1}{2}\cdot\dfrac{1}{7}+\dfrac{1}{7}\cdot\dfrac{1}{12}+...+\dfrac{1}{2002}\cdot\dfrac{1}{2007}\\ =\dfrac{1}{2\cdot7}+\dfrac{1}{7\cdot12}+...+\dfrac{1}{2002\cdot2007}\\ =\dfrac{1}{5}\left(\dfrac{5}{2\cdot7}+\dfrac{5}{7\cdot12}+...+\dfrac{5}{2002+2007}\right)\\ =\dfrac{1}{5}\cdot\left(\dfrac{1}{2}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{12}+...+\dfrac{1}{2002}-\dfrac{1}{2007}\right)\\ =\dfrac{1}{5}\left(\dfrac{1}{2}-\dfrac{1}{2007}\right)\\ =\dfrac{1}{5}\cdot\dfrac{2005}{4014}\\ =\dfrac{401}{4014}\)
\(B=\left(1+\dfrac{1}{2}\right)\cdot\left(1+\dfrac{1}{3}\right)...\left(1+\dfrac{1}{2007}\right)\\B=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\cdot\cdot\dfrac{2008}{2007}\\ B=\dfrac{3\cdot4\cdot...\cdot2008}{2\cdot3\cdot...\cdot2007}\\ B=\dfrac{2008}{2}\\ B=1004 \)
\(C=\left(1-\dfrac{1}{2}\right)\cdot\left(1-\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{2008}\right)\\ =\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{2007}{2008}\\ =\dfrac{1\cdot2\cdot...\cdot2007}{2\cdot3\cdot...\cdot2008}\\ =\dfrac{1}{2008}\)
\(\dfrac{x+2}{2010}+\dfrac{x+3}{2009}+\dfrac{x+4}{2008}+\dfrac{x+5}{2007}+\dfrac{x+2007}{5}=-5\)
Ta có:
\(\dfrac{x+2}{2010}+1+\dfrac{x+3}{2009}+1+\dfrac{x+4}{2008}+1+\dfrac{x+5}{2007}+1+\dfrac{x+2007}{5}+1=0\)
\(=\dfrac{x+2012}{2010}+\dfrac{x+2012}{2009}+\dfrac{x+2012}{2008}+\dfrac{x+2012}{2007}+\dfrac{x+2012}{5}=0\)
\(=\left(x+2012\right)\left(\dfrac{1}{2010}+\dfrac{1}{2009}+\dfrac{1}{2008}+\dfrac{1}{2007}+\dfrac{1}{5}\right)=0\)
Mà \(\dfrac{1}{2010}+\dfrac{1}{2009}+\dfrac{1}{2008}+\dfrac{1}{2007}+\dfrac{1}{5}\ne0\)
\(\Rightarrow x+2012=0\Rightarrow x=-2012\)
Vậy \(x=-2012\)
Chúc bạn học tốt!