Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{3x+3\sqrt{x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}+\frac{\sqrt{x}-2}{\sqrt{x}}.\left(\frac{1}{1-\sqrt{x}}-1\right)\)
\(M=\frac{3x+3\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\) \(+\frac{\sqrt{x}-2}{\sqrt{x}}.\frac{\sqrt{x}}{\sqrt{x}-1}\)
\(M=\frac{3x+3\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{x-1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\) \(+\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(M=\frac{3x+3\sqrt{x}-3-x+1+x-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(M=\frac{3x+3\sqrt{x}-6}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(M=\frac{3\left(x+\sqrt{x}-2\right)}{x+\sqrt{x}-2}\)
\(M=3\)
ĐK \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)
a. Ta có \(P=\frac{\sqrt{x}-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{\sqrt{x}-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\frac{3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{3}=\frac{\sqrt{x}}{\sqrt{x}+3}\)
b.Để \(P< 0,5\Rightarrow\frac{\sqrt{x}}{\sqrt{x}+3}-0,5< 0\Leftrightarrow\frac{2\sqrt{x}-\sqrt{x}-3}{2\cdot\left(\sqrt{x}+3\right)}< 0\)
\(\Leftrightarrow\frac{\sqrt{x}-3}{2\left(\sqrt{x}+3\right)}< 0\Leftrightarrow\sqrt{x}-3< 0\Leftrightarrow0\le x< 9\)
Vậy \(0\le x< 9\)thì \(P< 0,5\)
c. Để \(P=\frac{1}{2\sqrt{x}}\Rightarrow\frac{\sqrt{x}}{\sqrt{x}+3}=\frac{1}{2\sqrt{x}}\Leftrightarrow2x-\sqrt{x}-3=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=\frac{3}{2}\\\sqrt{x}=-1\left(l\right)\end{cases}\Leftrightarrow x=\frac{9}{4}\left(tm\right)}\)
Vậy \(x=\frac{9}{4}\)
các bạn sửa lại giúp mình đề bài ở đoạn P=.........-(1/căn x) thành P=.......+(1/căn x) với nha cảm ơn nhiều XD
a) \(P=\left[\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-\left(3x+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]:\left[\frac{\left(2\sqrt{x}-2\right)-\left(\sqrt{x}-3\right)}{\sqrt{x}-3}\right]\left(ĐK:x\ge0;x\ne9\right)\)
\(=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\frac{-3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\frac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\frac{-3}{\sqrt{x}+3}\)
\(3.\frac{x}{x^2+1}=1\)
\(\Leftrightarrow\frac{x}{x^2+1}=\frac{1}{3}\)
\(\Leftrightarrow x^2+1=3x\)
\(\Leftrightarrow x^2-3x+1=0\)
\(\cdot\Delta=\left(-3\right)^2-4.1.1=5\)
\(\cdot\Delta>0\)nên pt có 2 nghiệm phân biệt
\(x_1=\frac{3+\sqrt{5}}{2}\);\(x_2=\frac{3-\sqrt{5}}{2}\)
\(\Delta\)là gì ạ?