Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+5y^2+2y-4xy-3=0\)
\(x^2-4xy+4y^2+y^2+2y+1-4=0\)
\(\left(x-2y\right)^2+\left(y+1\right)^2-4=0\)
Vì \(\left(x-2y\right)^2\) lớn hơn hoặc bằng 0
và \(\left(y+1\right)^2\) lớn hơn hoặc bằng 0
Nên \(\left(x-2y\right)^2+\left(y+1\right)^2-4\) lớn hơn hoặc bằng -4
nên GTNN là -4
ban đầu m cũng làm giống bạn, nhưng đọc lại đề bài m cảm thấy khó hiểu : tìm X để cho Y thỏa mãn
đề m thi HK2 ấy
\(\left\{{}\begin{matrix}x-2y=3-m\\2x+y=3m+6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-2y=3-m\\4x+2y=6m+12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=3-m\\5x=5m+15\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=m+3\\y=m\end{matrix}\right.\)
\(A=\left(m+3\right)^2+m^2=2m^2+6m+9=2\left(m+\dfrac{3}{2}\right)^2+\dfrac{9}{2}\ge\dfrac{9}{2}\)
Dấu "=" xảy ra khi \(m+\dfrac{3}{2}=0\Rightarrow m=-\dfrac{3}{2}\)
a: Vì \(\dfrac{1}{2}\ne-\dfrac{2}{1}\)
nên hệ luôn có nghiệm duy nhất
\(\left\{{}\begin{matrix}x-2y=3-m\\2x+y=3\left(m+2\right)\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-2y=3-m\\4x+2y=6\left(m+2\right)=6m+12\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}5x=3-m+6m+12=5m+15\\x-2y=3-m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+3\\2y=x-3+m=m+3-3+m=2m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+3\\y=m\end{matrix}\right.\)
Để x>0 và y<0 thì \(\left\{{}\begin{matrix}m+3>0\\m< 0\end{matrix}\right.\)
=>-3<m<0
b: \(A=x^2+y^2=\left(m+3\right)^2+m^2\)
\(=2m^2+6m+9\)
\(=2\left(m^2+3m+\dfrac{9}{2}\right)\)
\(=2\left(m^2+3m+\dfrac{9}{4}+\dfrac{9}{4}\right)\)
\(=2\left(m+\dfrac{3}{2}\right)^2+\dfrac{9}{2}>=\dfrac{9}{2}\forall m\)
Dấu '=' xảy ra khi \(m+\dfrac{3}{2}=0\)
=>\(m=-\dfrac{3}{2}\)
x^2-4xy+4y^2+y^2+2y+1-4=0
=>(x-2y)^2+(y+1)^2-4=0
=>y=1;x=2