Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4. x + 16 chia hết cho x + 1
Ta có
x + 16 = ( x + 1 ) + 15
Mà x + 1 chia hết cho 1
=> 15 phải chia hết cho x + 1
=> x + 1 thuộc Ư(15)
Ư(15) = { 1 ; 15 ; 3 ; 5 }
TH1 : x + 1 = 1 => x = 1 - 1 = 0
TH2 : x + 1 = 15 => x = 15 - 1 = 14
TH3 : x + 1 = 3 => x = 3 - 1 = 2
TH4 : x + 1 = 5 => x = 5 - 1 = 4
Vậy x = 0 ; 14 ; 4 ; 2
1
a . Để A chia hết cho 9 thì các số hạng của nó phải chia hết cho 9
Mà 963 , 2439 , 361 chia hết cho 9
=> x cũng phải chia hết cho 9
Vậy điều kiện để A chia hết cho 9 là x chia hết cho 9
Và ngược lại để A ko chia hết cho 9 thì x không chia hết cho 9
b. Tương tự phần trên nha
Bài 3:
a chia 36 dư 12 số đó có dạng \(a=36k+12\left(k\in N\right)\)
\(\Rightarrow a=4\left(9k+3\right)\) nên a chia hết cho 4
Mà: \(9k\) ⋮ 3 ⇒ \(9k+3\) không chia hết cho 3
Nên a không chia hết cho 3
Bài 4:
a) \(x\in B\left(7\right)\) \(\Rightarrow x\in\left\{0;7;14;21;28;35;42;49;...\right\}\)
Mà: \(x\le35\)
\(\Rightarrow x\in\left\{0;7;14;21;28;35\right\}\)
b) \(x\inƯ\left(18\right)\Rightarrow x\in\left\{1;2;3;6;9;18\right\}\)
Mà: \(4< x\le10\)
\(\Rightarrow x\in\left\{6;9\right\}\)
Để A chia hết cho 5 thì x phải là số 0 và 5
=>x \(\varepsilon\)(0;5)
Để A không chia hết cho 5 thì x khác 0 và 5
=>x \(\varepsilon\)(1;2;3;4;6;7;8;9;...)