Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)
\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)
Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)
\(\left(x+2\right)\ne0\Rightarrow x\ne-2\)
\(\left(x-2\right)\ne0\Rightarrow x\ne2\)
Vậy để biểu thức xác định thì : \(x\ne\pm2\)
b) để C=0 thì ....
1, c , bn Nguyễn Hữu Triết chưa lm xong
ta có : \(/x-5/=2\)
\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)
thay x = 7 vào biểu thứcC
\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...
thay x = 3 vào C
\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)
=> ko tìm đc giá trị C tại x = 3
`a,x^3-8 ne 0`
`=>x^3 ne 8`
`=>x ne 2`
`b,2x^2+5x+3 ne 0`
`=>2x^2+2x+3x+3 ne 0`
`=>2x(x+1)+3(x+1) ne 0`
`=>(x+1)(2x+3) ne 0`
`=>x ne -1,-3/2`
`c,x^2-4 ne 0`
`=>x^2 ne 4`
`=>x ne 2,-2`
a) ĐK:
\(x^3-8\ne0\\ \Leftrightarrow x\ne2\)
b) ĐK:
\(2x^2+5x+3\ne0\\ \Leftrightarrow\left[{}\begin{matrix}x\ne-1\\x\ne-\dfrac{3}{2}\end{matrix}\right.\)
c) ĐK:
\(x^2-4\ne0\\ \Leftrightarrow x\ne\pm2\)
\(ĐK:x^3+27\ne0\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)\ne0\\ \Leftrightarrow x\ne-3\left(x^2-3x+9>0\right)\)
`Answer:`
a) Phân tích \(\frac{7x}{15x-5}\) được xác định khi: \(15x-5\ne0\Rightarrow15x\ne5\Rightarrow x\ne\frac{1}{3}\)
b) \(\frac{x+4}{x^2-9}=\frac{x+4}{\left(x-3\right)\left(x+3\right)}\)
Vậy điều kiện xác định: `x\ne+-3`
c) Vì phân thức có chứa ẩn dưới mẫu nên để cho phân thức xác định thì:
\(36x^2-25\ne0\Rightarrow36x^2\ne25\Rightarrow x^2\ne\frac{25}{36}\Rightarrow x\ne\pm\frac{5}{6}\)
d) Phân thức xác định khi \(x^2+2x+3\ne0\Rightarrow\left(x+1\right)^2+2\ne0\)
Nhận thấy \(\left(x+1\right)^2+2\ge2>0\forall x\)
\(\Rightarrow\left(x+1\right)^2+2\ne0\) (Luôn đúng)
Vậy phân thức trên được xác định với mọi `x`
Đề bài là \(B=\dfrac{\left(x-1\right)^2-4}{\left(2x+1\right)^2-\left(x+2\right)^2}\) hay là \(B=\dfrac{\left(x-1\right)^2-4}{\left(2x+1\right)^2}-\left(x+2\right)^2?\)
\(\dfrac{\left(x-1\right)^2-4}{\left(2x+1\right)^2-\left(x+2\right)^2}\)
viết lại biểu thức
\(\frac{2x+7}{x-1}=\frac{2x-2+9}{x-1}=\frac{2\left(x-1\right)+9}{x-1}=2+\frac{9}{x-1}\)
Để \(2+\frac{9}{x-1}\in Z\Leftrightarrow\frac{9}{x-1}\in Z\) => X-1 thuộc ước của 9 = { -1;-3;-9;1;3;9 }
=> x = { 0 ; -2;-8;2;4;10 }
Các ý khác tương tự
a) x ≠ -3. b)x ≠ ±2.
c) x ≠ 0, x ≠ - 1 2 d) x ≠ 3